350,216 research outputs found
Self-organization of signal transduction
We propose a model of parameter learning for signal transduction, where the
objective function is defined by signal transmission efficiency. We apply this
to learn kinetic rates as a form of evolutionary learning, and look for
parameters which satisfy the objective. This is a novel approach compared to
the usual technique of adjusting parameters only on the basis of experimental
data. The resulting model is self-organizing, i.e. perturbations in protein
concentrations or changes in extracellular signaling will automatically lead to
adaptation. We systematically perturb protein concentrations and observe the
response of the system. We find compensatory or co-regulation of protein
expression levels. In a novel experiment, we alter the distribution of
extracellular signaling, and observe adaptation based on optimizing signal
transmission. We also discuss the relationship between signaling with and
without transients. Signaling by transients may involve maximization of signal
transmission efficiency for the peak response, but a minimization in
steady-state responses. With an appropriate objective function, this can also
be achieved by concentration adjustment. Self-organizing systems may be
predictive of unwanted drug interference effects, since they aim to mimic
complex cellular adaptation in a unified way.Comment: updated version, 13 pages, 4 figures, 3 Tables, supplemental tabl
Finite-State Channel Models for Signal Transduction in Neural Systems
Information theory provides powerful tools for understanding communication
systems. This analysis can be applied to intercellular signal transduction,
which is a means of chemical communication among cells and microbes. We discuss
how to apply information-theoretic analysis to ligand-receptor systems, which
form the signal carrier and receiver in intercellular signal transduction
channels. We also discuss the applications of these results to neuroscience.Comment: Accepted for publication in 2016 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Shanghai, Chin
CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation.
Activation of an immune response requires intercellular contact between T lymphocytes and antigen-presenting cells (APC). Interaction of the T cell antigen receptor (TCR) with antigen in the context of major histocompatibility molecules mediates signal transduction, but T cell activation appears to require the induction of a second costimulatory signal transduction pathway. Recent studies suggest that interaction of CD28 with B7 on APC might deliver such a costimulatory signal. To investigate the role of CD28 signal transduction during APC-dependent T cell activation, we have used Staphylococcal enterotoxins (SEs) presented by a B7-positive APC. We used anti-B7 monoclonal antibodies and a mutant interleukin 2 (IL-2) promoter construct, unresponsive to CD28-generated signals, in transient transfection assays to examine the contribution of the CD28-B7 interaction to IL-2 gene activation. These studies indicate that the CD28-regulated signal transduction pathway is activated during SE stimulation of T cells and plays an important role in SE induction of IL-2 gene expression through its influence upon the CD28-responsive element contained within the IL-2 gene promoter. This effect is particularly profound in the activation of the IL-2 gene in peripheral blood T cells
Optimal length and signal amplification in weakly activated signal transduction cascades
Weakly activated signaling cascades can be modeled as linear systems. The
input-to-output transfer function and the internal gain of a linear system,
provide natural measures for the propagation of the input signal down the
cascade and for the characterization of the final outcome. The most efficient
design of a cascade for generating sharp signals, is obtained by choosing all
the off rates equal, and a ``universal'' finite optimal length.Comment: 27 pages, 10 figures, LaTeX fil
Enzyme localization can drastically affect signal amplification in signal transduction pathways
Push-pull networks are ubiquitous in signal transduction pathways in both
prokaryotic and eukaryotic cells. They allow cells to strongly amplify signals
via the mechanism of zero-order ultrasensitivity. In a push-pull network, two
antagonistic enzymes control the activity of a protein by covalent
modification. These enzymes are often uniformly distributed in the cytoplasm.
They can, however, also be colocalized in space, for instance, near the pole of
the cell. Moreover, it is increasingly recognized that these enzymes can also
be spatially separated, leading to gradients of the active form of the
messenger protein. Here, we investigate the consequences of the spatial
distributions of the enzymes for the amplification properties of push-pull
networks. Our calculations reveal that enzyme localization by itself can have a
dramatic effect on the gain. The gain is maximized when the two enzymes are
either uniformly distributed or colocalized in one region in the cell.
Depending on the diffusion constants, however, the sharpness of the response
can be strongly reduced when the enzymes are spatially separated. We discuss
how our predictions could be tested experimentally.Comment: PLoS Comp Biol, in press. 32 pages including 6 figures and supporting
informatio
Subsection signal transduction
AbstractInteractions between human platelets and human umbilical vein endothelial cells (HUVEC) were studied by monitoring changes in cytosolic [Ca2+]i in both cell types. Confluent monolayers of Fura-2-loaded HUVEC, grown on gelatin-coated coverslips, responded to repeated addition of a suspension of unstimulated platelets by transient increases in cytosolic [Ca2+]i. These platelet-evoked Ca2+ responses were not caused by products secreted from the platelets and were insensitive to inhibitors of platelet activation and/or platelet aggregation. The platelet-evoked rises in [Ca2+]i in endothelial cells, similarly as the thrombin-evoked rises, were blocked by preincubation of HUVEC with the phospholipase C inhibitor U73122 or the Ca2+ influx blocker Ni2+. In contrast, treatment with the protein tyrosine kinase inhibitor genistein was without effect. Video imaging experiments, in which the fluorescence signal was analysed from the individual cells of an endothelial monolayer, showed that only 2–20% of the cells, scattered over the monolayer, responded to the addition of platelets by a transient increase in [Ca2+]i, whereas most of the cells responded to thrombin. This leads to the conclusion that unstimulated platelets can activate HUVEC putatively by mechanical interaction with individual endothelial cells in the monolayer
Ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons
Although evidence obtained with the PC12 cell line has suggested a role for the ras oncogene proteins in the signal transduction of nerve growth factor-mediated fiber outgrowth, little is known about the signal transduction mechanisms involved in the neuronal response to neurotrophic factors in nontransformed cells. We report here that the oncogene protein T24-ras, when introduced into the cytoplasm of freshly dissociated chick embryonic neurons, promotes the in vitro survival and neurite outgrowth of nerve growth factor-responsive dorsal root ganglion neurons, brain-derived neurotrophic factor-responsive nodose ganglion neurons, and ciliary neuronotrophic factor-responsive ciliary ganglion neurons. The proto-oncogene product c-Ha-ras also promotes neuronal survival, albeit less strongly. No effect could be observed with truncated counterparts of T24-ras and c-Ha-ras lacking the 23 C-terminal amino acids including the membrane-anchoring, palmityl-accepting cysteine. These results suggest a generalized involvement of ras or ras-like proteins in the intracellular signal transduction pathway for neurotrophic factors
- …