4,449 research outputs found
Membrane-bound β-catenin degradation is enhanced by ETS2-mediated Siah1 induction in Helicobacter pylori-infected gastric cancer cells.
β-catenin has two different cellular functions: intercellular adhesion and transcriptional activity. The E3 ubiquitin ligase Siah1 causes ubiquitin-mediated degradation of the cytosolic β-catenin and therefore, impairs nuclear translocation and oncogenic function of β-catenin. However, the effect of Siah1 on the cell membrane bound β-catenin has not been studied. In this study, we identified that the carcinogenic bacterium H. pylori increased ETS2 transcription factor-mediated Siah1 protein expression in gastric cancer cells (GCCs) MKN45, AGS and Kato III. Siah1 protein level was also noticeably higher in gastric adenocarcinoma biopsy samples as compared to non-cancerous gastric epithelia. Siah1 knockdown significantly decreased invasiveness and migration of H. pylori-infected GCCs. Although, Siah1 could not increase degradation of the cytosolic β-catenin and its nuclear translocation, it enhanced degradation of the membrane-bound β-catenin in the infected GCCs. This loss of membrane-bound pool of β-catenin was not associated with the proteasomal degradation of E-cadherin. Thus, this work delineated the role of Siah1 in increasing invasiveness of H. pylori-infected GCCs
Regulation of alphaherpesvirus infections by the ICP0 family of proteins
Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is important for the regulation of lytic and latent viral infection. Like the related proteins expressed by other alphaherpesviruses, ICP0 has a zinc-stabilized RING finger domain that confers E3 ubiquitin ligase activity. This domain is essential for the core functions of ICP0 and its activity leads to the degradation of a number of cellular proteins, some of which are involved in cellular defences that restrict viral infection. The article reviews recent advances in ICP0-related research, with an emphasis on the mechanisms by which ICP0 and related proteins counteract antiviral restriction and the roles in this process of cellular nuclear substructures known as ND10 or PML nuclear bodies. We also summarize recent advances in the understanding of the biochemical aspects of ICP0 activity. These studies highlight the importance of the SUMO conjugation pathway in both intrinsic resistance to HSV-1 infection and in substrate targeting by ICP0. The topics discussed in this review are relevant not only to HSV-1 infection, but also to cellular intrinsic resistance against herpesviruses more generally and the mechanisms by which viruses can evade this restriction
Wnt/beta-catenin/Tcf signaling: A critical pathway in gastrointestinal tumorigenesis
Cancers of the gastrointestinal tract, including the liver, bile ducts, and pancreas, constitute the largest group of malignant tumors. Colorectal cancer is one of the most common neoplastic diseases in Western countries and one of the leading causes of cancer-related deaths. Inactivation of the adenomatous polyposis coli (APC) tumor-suppressor gene during early adenoma formation is thought to be the first genetic event in the process of colorectal carcinogenesis followed by mutations in oncogenes like K-Ras and tumor-suppressor genes like p53. Identification of the interaction of APC with the proto-oncogene beta-catenin has linked colorectal carcinogenesis to the Wnt-signal transduction pathway. The main function of APC is thought to be the regulation of free beta-catenin in concert with the glycogen synthase kinase 3beta (GSK-3beta) and Axin proteins. Loss of APC function, inactivation of Axin or activating beta-catenin mutations result in the cellular accumulation of beta-catenin. Upon translocation to the nucleus beta-catenin serves as an activator of T-cell factor (Tcf)-dependent transcription leading to an increased expression of several specific target genes including c-Myc, cyclin D1, MMP-7, and ITF-2. While APC mutations are almost exclusively found in colorectal cancers, deregulation of Wnt/beta-catenin/Tcf signaling is also common in other gastrointestinal and extra-gastrointestinal human cancers. In a fraction of hepatocellular carcinomas the Writ pathway is deregulated by inactivation of Axin or stabilizing mutations of beta-catenin. The majority of hepatoblastomas and a group of gastric cancers also carry beta-catenin mutations. Clearly, this pathway harbors great potential for future applications in cancer diagnostics, staging, and therapy. Copyright (C) 2002 S. Karger AG, Basel
The consideration of surrogate model accuracy in single-objective electromagnetic design optimization
The computational cost of evaluating the objective function in electromagnetic optimal design problems necessitates the use of cost-effective techniques. This paper describes how one popular technique, surrogate modelling, has been used in the single-objective optimization of electromagnetic devices. Three different types of surrogate model are considered, namely polynomial approximation, artificial neural networks and kriging. The importance of considering surrogate model accuracy is emphasised, and techniques used to improve accuracy for each type of model are discussed. Developments in this area outside the field of electromagnetic design optimization are also mentioned. It is concluded that surrogate model accuracy is an important factor which should be considered during an optimization search, and that developments have been made elsewhere in this area which are yet to be implemented in electromagnetic design optimization
Components of the Ubiquitin Proteasome System are Required for the Nonapoptotic Death of the C. Elegans Linker Cell
Cell death is a major cell fate that promotes tissue sculpting and morphogenesis during animal development. Many developmental cell-culling events cannot be accounted for solely by caspase-dependent apoptosis, yet, alternate pathways are poorly understood. Direct evidence that caspase-independent non-apoptotic cell death pathways operate during animal development is provided by studies of the C. elegans linker cell. Genetic studies of linker cell death have led to the identification of genes that promote this process, including pqn-41, which encodes a glutamine-rich protein, as well as tir-1/TIRdomain and sek-1/MAPKK, which may function in the same pathway as pqn-41. The let- 7 microRNA and its indirect target, the Zn-finger transcription factor LIN-29, also promote linker cell death, and may act early in the process. Our work suggests that components of the ubiquitin proteasome system (UPS) act to promote linker cell death. We show that LET-70, an E2 ubiquitin-conjugating enzyme, is required cell-autonomously for linker cell death. LET-70 levels, as well as those of ubiquitin and some proteasome components, increase just before linker cell death initiation. This rise is dependent on an MLL-type histone methyltransferase complex and a MAPK cascade, whose activities are required for linker cell death. The E3 ligase components SIAH-1, RBX-1, and CUL-3 are also required for linker cell death and appear to act in the same pathway as let-70. We also identify the PLZF transcription factor EOR-1, and its accessory protein, EOR-2 as major regulators of linker cell death. Our studies suggest that EOR-1/2, as well as all known regulators of the linker cell death pathway may act upstream of UPS components to promote cell death. Our studies reveal that activation of the ubiquitin proteasome system is an important event promoting linker cell death. Given the morphological similarities between linker cell death and non-apoptotic developmental and pathological cell death in vertebrates, we raise the possibility that the proteasome may be a key mediator of vertebrate cell death
Histone deacetylase inhibitors regulate the proteasomal degradation of oncoproteins
Leukemogenesis is often linked to fusion proteins generated by chromosomal translocation products. Examples are AML1-ETO and PML-RARα which contribute to the pathogenesis of acute myeloid leukemia (AML). The work presented here reveals the novel insight that the turnover of both, AML1-ETO and PML-RARα, depends on the HDACi-inducible ubiquitin conjugase UBCH8 and the ubiquitin ligase SIAH1. Beyond showing that HDACi promote the degradation of oncoproteins, this work reveals that the ubiquitin ligase RLIM equally is a substrate for SIAH1. Thus, a formerly unknown hierarchical order of ubiquitin ligases affects the ubiquitin-proteasome system.
Since constitutively activated mutant FMS-like tyrosine kinase 3 (FLT3-ITD) causally contributes to leukemic transformation and is frequently found in conjunction with
AML1-ETO and PML-RARα in AML patients, it was also tested whether HDACi attenuate FLT3-ITD. Indeed, UBCH8 together with SIAH1 interact in a tyrosine phosphorylation-dependent way with FLT3-ITD and promote its proteasomal degradation. Accordingly, unstimulated wild-type FLT3 is hardly affected by HDACi. Thus, UBCH8, which has been implicated primarily in nuclear processes, could be identified as a novel important HDACi-inducible modulator of FLT3-ITD stability and leukemic cell survival.
In summary, I could demonstrate in various AML cell lines and heterologous expression systems that UBCH8 and SIAH1 physically interact with and target FLT3-ITD, AML1-ETO, PML-RARα, and RLIM for proteasomal degradation.
This work furthermore provides a deeper understanding on how enzymes promoting proteasomal degradation are regulated and how they interact with each other as well as with their cancer-relevant substrates. Conclusions presented here reveal novel biochemical mechanisms and molecular networks. In addition, they have implications for translational research
- …