29,245 research outputs found
A note on solar elevation dependence of clear sky snow albedo
Recent attempts to match shortwave albedo of snow for clear skies using approximate spectral solar fluxes and solutions of the radiative transfer equation for snow were unsuccessful until a separate surface reflection term was introduced. A separate consideration of specular reflection from surface snow grains has been objected to as being ad hoc. Results based on a new parameterization of shortwave radiation are discussed. Compared to the previous radiation models, new model gives higher diffuse insolation and predicts higher albedos. The difference between observed and predicted albedos is substantially reduced without invoking surface reflection
Relationship between downwelling surface shortwave radiative fluxes and sea surface temperature over the tropical Pacific: AMIP II models versus satellite estimates
Incident shortwave radiation at the Earth's surface is the driving force of the climate system. Understanding the relationship between this forcing and the sea surface temperature, in particular, over the tropical Pacific Ocean is a topic of great interest because of possible climatic implications. The objective of this study is to investigate the relationship between downwelling shortwave radiative fluxes and sea surface temperature by using available data on radiative fluxes. We assess first the shortwave radiation from three General Circulation Models that participated in the second phase of the Atmospheric Model Intercomparison Project (AMIP II) against estimates of such fluxes from satellites. The shortwave radiation estimated from the satellite is based on observations from the International Satellite Cloud Climatology Project D1 data and the University of Maryland Shortwave Radiation Budget model (UMD/SRB). Model and satellite estimates of surface radiative fluxes are found to be in best agreement in the central equatorial Pacific, according to mean climatology and spatial correlations. We apply a Canonical Correlation Analysis to determine the interrelated areas where shortwave fluxes and sea surface temperature are most sensitive to climate forcing. Model simulations and satellite estimates of shortwave fluxes both capture well the interannual signal of El Niño-like variability. The tendency for an increase in shortwave radiation from the UMD/SRB model is not captured by the AMIP II models
The Surface Radiation Budget and Cloud Climate Interactions as a Part of CERES
Work that has been completed is described in reprints and preprints, and summaries in terms of broad categories are given as follows: (1) The Relationship between Surface and Satellite Shortwave Radiative Fluxes; (2) Cloud-Climate Interactions in Atmospheric General Circulation Models; (3) Absorption of Shortwave radiation by clouds; (4) Clear-sky atmospheres shortwave radiation; and (5) Surface shortwave radiation measurements
Recommended from our members
Changes in atmospheric shortwave absorption as important driver of dimming and brightening
The amount of solar (shortwave) radiation that reaches the Earth’s surface underwent substantial variations over recent decades. Since the 1950s, surface shortwave radiation gradually decreased at widespread locations. In Europe, this so-called surface dimming continued until the late 1980s, when surface brightening set in and surface shortwave radiation increased again. In China, the dimming levelled off in the 1980s, but did not turn into brightening until 2005. Changes in clouds and aerosol are the prime potential causes for the phenomenon, but the scientific community has not yet reached a consensus about the relative role of the different potential forcing agents. Here we bring together co-located long-term observational data from surface and space to study decadal changes of the shortwave energy balance in Europe and China from 1985 to 2015. Within this observation-based framework, we show that an increasing net shortwave radiation at the top of the atmosphere and a decreasing atmospheric shortwave absorption each contribute roughly half of the observed brightening trends in Europe. For China, we find that the continued dimming until 2005 and the subsequent brightening occurred despite opposing trends in the top-of-the-atmosphere net shortwave radiation. This shows that changes in atmospheric shortwave absorption are a major driver of European brightening and the dominant cause for the Chinese surface trends. Although the observed variations cannot be attributed unambiguously, we discuss potential causes for the observed changes
Measuring and modeling near-surface reflected and emitted radiation fluxes at the FIFE site
Information is presented pertaining to the measurement and estimation of reflected and emitted components of the radiation balance. Information is included about reflectance and transmittance of solar radiation from and through the leaves of some grass and forb prairie species, bidirectional reflectance from a prairie canopy is discussed and measured and estimated fluxes are described of incoming and outgoing longwave and shortwave radiation. Results of the study showed only very small differences in reflectances and transmittances for the adaxial and abaxial surfaces of grass species in the visible and infrared wavebands, but some differences in the infrared wavebands were noted for the forbs. Reflectance from the prairie canopy changed as a function of solar and view zenith angles in the solar principal plane with definite asymmetry about nadir. The surface temperature of prairie canopies was found to vary by as much as 5 C depending on view zenith and azimuth position and on the solar azimuth. Aerodynamic temperature calculated from measured sensible heat fluxes ranged from 0 to 3 C higher than nadir-viewed temperatures. Models were developed to estimate incoming and reflected shortwave radiation from data collected with a Barnes Modular Multiband Radiometer. Several algorithms for estimating incoming longwave radiation were evaluated and compared to actual measures of that parameter. Net radiation was calculated using the estimated components of the shortwave radiation streams, determined from the algorithms developed, and from the longwave radiation streams provided by the Brunt, modified Deacon, and the Stefan-Boltzmann models. Estimates of net radiation were compared to measured values and found to be within the measurement error of the net radiometers used in the study
Recommended from our members
Estimation of surface longwave radiation components from ground-based historical net radiation and weather data
A methodology for estimating ground upwelling, clear-sky and cloud downwelling longwave radiations (L↑, Lsky ↓, and Lcld↓) and net shortwave radiation (Sn) at 30-min temporal scales based on long-term ground-based net radiations and meteorological observations is described. Components of surface radiation can be estimated from empirical models, cloud radiation models, and remote sensing observations. The proposed method combines the local calibration of empirical models and the radiative energy balance method to obtain the dual-directional, dual-spectral components of the surface radiation for the offline land surface process modeling and ecosystem study. By extracting information of radiation components from long-term net radiation and concurrent weather data, the utility of tower net radiation observations is maximized. Four test sites with multiyears' radiation records were used to evaluate the method. The results show that when compared with the results of empirical models using default parameters the proposed method is able to produce more accurate estimates of longwave surface components (Lg ↑, Lsky↓, Lcld↓) and net shortwave radiation (Sn). Overall, the estimated and observed surface radiation components show high correlations (>0.90), high index of agreement (>0.89), and low errors (root mean square error <30 W m-2 and bias <11 W m-2) at all of the test sites. The advantage of this scheme is that the refinement is achieved using the information from the historical net radiation and weather data at each observation site without additional measurements. This method is applicable for many existing observation sites worldwide which have long-term (at least 1 year) continuous net radiation records. Copyright 2008 by the American Geophysical Union
Relationships between Environmental Factors and the Growth of Above-Ground Biomass in Boreal Forest
This study investigates the influence of shortwave radiation (albedo is calculated to characterize the absorption of shortwave radiation), temperature and relative humidity on biomass growth of two coniferous species in boreal forest. Stem circumferences are measured for calculating daily biomass growth rate and calculated growth rate is analysed by statistical method for revealing its possible correlations to environmental factors (shortwave radiation, temperature and relative humidity). Comparisons between biomass growth rate and environmental factors are also made for finding correlation. Temperature sets lower limit for biomass growth. Biomass growth rate is found dependent on the values of albedo, meaning absorption of shortwave radiation dominates growth. Relative humidity is found negatively dependent on temperature. However, there is no statistical dependence of growth rate found on temperature and relative humidity, although some extreme temperatures and relative humidity are noticed affecting growth rate through evaporation (temperature affects negatively and relative humidity affects positively). The model on the relationship between values of albedo and temperature in the process of glucose absorption is also revealed and albedo is regarded to dominate such a process. Connections among these environmental factors are found and the affecting mechanism is established finally. Besides, species-specific difference of response to shortwave radiation between Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L.) is revealed
Summary of along-track data from the earth radiation budget satellite for several representative ocean regions
For several days in January and August 1985, the Earth Radiation Budget Satellite, a component of the Earth Radiation Budget Experiment (ERBE), was operated in an along-track scanning mode. A survey of radiance measurements taken in this mode is given for five ocean regions: the north and south Atlantic, the Arabian Sea, the western Pacific north of the Equator, and part of the Intertropical Convergence Zone. Each overflight contains information about the clear scene and three cloud categories: partly cloudy, mostly cloudy, and overcast. The data presented include the variation of longwave and shortwave radiance in each scene classification as a function of viewing zenity angle during each overflight of one of the five target regions. Several features of interest in the development of anisotropic models are evident, including the azimuthal dependence of shortwave radiance that is an essential feature of shortwave bidirectional models. The data also demonstrate that the scene classification algorithm employed by the ERBE results in scene classifications that are a function of viewing geometry
- …