1,928 research outputs found
Fault Management in DC Microgrids:A Review of Challenges, Countermeasures, and Future Research Trends
The significant benefits of DC microgrids have instigated extensive efforts to be an alternative network as compared to conventional AC power networks. Although their deployment is ever-growing, multiple challenges still occurred for the protection of DC microgrids to efficiently design, control, and operate the system for the islanded mode and grid-tied mode. Therefore, there are extensive research activities underway to tackle these issues. The challenge arises from the sudden exponential increase in DC fault current, which must be extinguished in the absence of the naturally occurring zero crossings, potentially leading to sustained arcs. This paper presents cut-age and state-of-the-art issues concerning the fault management of DC microgrids. It provides an account of research in areas related to fault management of DC microgrids, including fault detection, location, identification, isolation, and reconfiguration. In each area, a comprehensive review has been carried out to identify the fault management of DC microgrids. Finally, future trends and challenges regarding fault management in DC-microgrids are also discussed
Self-Selective Correlation Ship Tracking Method for Smart Ocean System
In recent years, with the development of the marine industry, navigation
environment becomes more complicated. Some artificial intelligence
technologies, such as computer vision, can recognize, track and count the
sailing ships to ensure the maritime security and facilitates the management
for Smart Ocean System. Aiming at the scaling problem and boundary effect
problem of traditional correlation filtering methods, we propose a
self-selective correlation filtering method based on box regression (BRCF). The
proposed method mainly include: 1) A self-selective model with negative samples
mining method which effectively reduces the boundary effect in strengthening
the classification ability of classifier at the same time; 2) A bounding box
regression method combined with a key points matching method for the scale
prediction, leading to a fast and efficient calculation. The experimental
results show that the proposed method can effectively deal with the problem of
ship size changes and background interference. The success rates and precisions
were higher than Discriminative Scale Space Tracking (DSST) by over 8
percentage points on the marine traffic dataset of our laboratory. In terms of
processing speed, the proposed method is higher than DSST by nearly 22 Frames
Per Second (FPS)
Review of Cetacean's click detection algorithms
The detection of echolocation clicks is key in understanding the intricate
behaviors of cetaceans and monitoring their populations. Cetacean species
relying on clicks for navigation, foraging and even communications are sperm
whales (Physeter macrocephalus) and a variety of dolphin groups. Echolocation
clicks are wideband signals of short duration that are often emitted in
sequences of varying inter-click-intervals. While datasets and models for
clicks exist, the detection and classification of clicks present a significant
challenge, mostly due to the diversity of clicks' structures, overlapping
signals from simultaneously emitting animals, and the abundance of noise
transients from, for example, snapping shrimps and shipping cavitation noise.
This paper provides a survey of the many detection and classification
methodologies of clicks, ranging from 2002 to 2023. We divide the surveyed
techniques into categories by their methodology. Specifically, feature analysis
(e.g., phase, ICI and duration), frequency content, energy based detection,
supervised and unsupervised machine learning, template matching and adaptive
detection approaches. Also surveyed are open access platforms for click
detections, and databases openly available for testing. Details of the method
applied for each paper are given along with advantages and limitations, and for
each category we analyze the remaining challenges. The paper also includes a
performance comparison for several schemes over a shared database. Finally, we
provide tables summarizing the existing detection schemes in terms of
challenges address, methods, detection and classification tools applied,
features used and applications.Comment: 23 pages, 6 tables, 4 figure
Advances in power quality analysis techniques for electrical machines and drives: a review
The electric machines are the elements most used at an industry level, and they represent the major power consumption of the productive processes. Particularly speaking, among all electric machines, the motors and their drives play a key role since they literally allow the motion interchange in the industrial processes; it could be said that they are the medullar column for moving the rest of the mechanical parts. Hence, their proper operation must be guaranteed in order to raise, as much as possible, their efficiency, and, as consequence, bring out the economic benefits. This review presents a general overview of the reported works that address the efficiency topic in motors and drives and in the power quality of the electric grid. This study speaks about the relationship existing between the motors and drives that induces electric disturbances into the grid, affecting its power quality, and also how these power disturbances present in the electrical network adversely affect, in turn, the motors and drives. In addition, the reported techniques that tackle the detection, classification, and mitigations of power quality disturbances are discussed. Additionally, several works are reviewed in order to present the panorama that show the evolution and advances in the techniques and tendencies in both senses: motors and drives affecting the power source quality and the power quality disturbances affecting the efficiency of motors and drives. A discussion of trends in techniques and future work about power quality analysis from the motors and drives efficiency viewpoint is provided. Finally, some prompts are made about alternative methods that could help in overcome the gaps until now detected in the reported approaches referring to the detection, classification and mitigation of power disturbances with views toward the improvement of the efficiency of motors and drives.Peer ReviewedPostprint (published version
A Review on Application of Artificial Intelligence Techniques in Microgrids
A microgrid can be formed by the integration of different components such as loads, renewable/conventional units, and energy storage systems in a local area. Microgrids with the advantages of being flexible, environmentally friendly, and self-sufficient can improve the power system performance metrics such as resiliency and reliability. However, design and implementation of microgrids are always faced with different challenges considering the uncertainties associated with loads and renewable energy resources (RERs), sudden load variations, energy management of several energy resources, etc. Therefore, it is required to employ such rapid and accurate methods, as artificial intelligence (AI) techniques, to address these challenges and improve the MG's efficiency, stability, security, and reliability. Utilization of AI helps to develop systems as intelligent as humans to learn, decide, and solve problems. This paper presents a review on different applications of AI-based techniques in microgrids such as energy management, load and generation forecasting, protection, power electronics control, and cyber security. Different AI tasks such as regression and classification in microgrids are discussed using methods including machine learning, artificial neural networks, fuzzy logic, support vector machines, etc. The advantages, limitation, and future trends of AI applications in microgrids are discussed.©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
2004 Research Engineering Annual Report
Selected research and technology activities at Dryden Flight Research Center are summarized. These activities exemplify the Center's varied and productive research efforts
Symmetry in Structural Health Monitoring
In this Special Issue on symmetry, we mainly discuss the application of symmetry in various structural health monitoring. For example, considering the health monitoring of a known structure, by obtaining the static or dynamic response of the structure, using different signal processing methods, including some advanced filtering methods, to remove the influence of environmental noise, and extract structural feature parameters to determine the safety of the structure. These damage diagnosis methods can also be effectively applied to various types of infrastructure and mechanical equipment. For this reason, the vibration control of various structures and the knowledge of random structure dynamics should be considered, which will promote the rapid development of the structural health monitoring. Among them, signal extraction and evaluation methods are also worthy of study. The improvement of signal acquisition instruments and acquisition methods improves the accuracy of data. A good evaluation method will help to correctly understand the performance with different types of infrastructure and mechanical equipment
- …