18,781 research outputs found

    On Perturbation theory improved by Strong coupling expansion

    Full text link
    In theoretical physics, we sometimes have two perturbative expansions of physical quantity around different two points in parameter space. In terms of the two perturbative expansions, we introduce a new type of smooth interpolating function consistent with the both expansions, which includes the standard Pad\'e approximant and fractional power of polynomial method constructed by Sen as special cases. We point out that we can construct enormous number of such interpolating functions in principle while the "best" approximation for the exact answer of the physical quantity should be unique among the interpolating functions. We propose a criterion to determine the "best" interpolating function, which is applicable except some situations even if we do not know the exact answer. It turns out that our criterion works for various examples including specific heat in two-dimensional Ising model, average plaquette in four-dimensional SU(3) pure Yang-Mills theory on lattice and free energy in c=1 string theory at self-dual radius. We also mention possible applications of the interpolating functions to system with phase transition.Comment: 31+11 pages, 15 figures, 9 tables, 1 Mathematica file; v3: minor correction

    Ising n-fold integrals as diagonals of rational functions and integrality of series expansions

    Full text link
    We show that the n-fold integrals χ(n)\chi^{(n)} of the magnetic susceptibility of the Ising model, as well as various other n-fold integrals of the "Ising class", or n-fold integrals from enumerative combinatorics, like lattice Green functions, correspond to a distinguished class of function generalising algebraic functions: they are actually diagonals of rational functions. As a consequence, the power series expansions of the, analytic at x=0, solutions of these linear differential equations "Derived From Geometry" are globally bounded, which means that, after just one rescaling of the expansion variable, they can be cast into series expansions with integer coefficients. We also give several results showing that the unique analytical solution of Calabi-Yau ODEs, and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal weights, are always diagonal of rational functions. Besides, in a more enumerative combinatorics context, generating functions whose coefficients are expressed in terms of nested sums of products of binomial terms can also be shown to be diagonals of rational functions. We finally address the question of the relations between the notion of integrality (series with integer coefficients, or, more generally, globally bounded series) and the modularity of ODEs.Comment: This paper is the short version of the larger (100 pages) version, available as arXiv:1211.6031 , where all the detailed proofs are given and where a much larger set of examples is displaye

    Linked cluster expansions beyond nearest neighbour interactions: convergence and graph classes

    Get PDF
    We generalize the technique of linked cluster expansions on hypercubic lattices to actions that couple fields at lattice sites which are not nearest neighbours. We show that in this case the graphical expansion can be arranged in such a way that the classes of graphs to be considered are identical to those of the pure nearest neighbour interaction. The only change then concerns the computation of lattice imbedding numbers. All the complications that arise can be reduced to a generalization of the notion of free random walks, including hopping beyond nearest neighbour. Explicit expressions for combinatorical numbers of the latter are given. We show that under some general conditions the linked cluster expansion series have a non-vanishing radius of convergence.Comment: 20 pages, latex2

    Heterotic-string amplitudes at one loop: modular graph forms and relations to open strings

    Get PDF
    We investigate one-loop four-point scattering of non-abelian gauge bosons in heterotic string theory and identify new connections with the corresponding open-string amplitude. In the low-energy expansion of the heterotic-string amplitude, the integrals over torus punctures are systematically evaluated in terms of modular graph forms, certain non-holomorphic modular forms. For a specific torus integral, the modular graph forms in the low-energy expansion are related to the elliptic multiple zeta values from the analogous open-string integrations over cylinder boundaries. The detailed correspondence between these modular graph forms and elliptic multiple zeta values supports a recent proposal for an elliptic generalization of the single-valued map at genus zero.Comment: 57+22 pages, v2: references updated, version published in JHE

    Triviality problem and the high-temperature expansions of the higher susceptibilities for the Ising and the scalar field models on four-, five- and six-dimensional lattices

    Get PDF
    High-temperature expansions are presently the only viable approach to the numerical calculation of the higher susceptibilities for the spin and the scalar-field models on high-dimensional lattices. The critical amplitudes of these quantities enter into a sequence of universal amplitude-ratios which determine the critical equation of state. We have obtained a substantial extension through order 24, of the high-temperature expansions of the free energy (in presence of a magnetic field) for the Ising models with spin s >= 1/2 and for the lattice scalar field theory with quartic self-interaction, on the simple-cubic and the body-centered-cubic lattices in four, five and six spatial dimensions. A numerical analysis of the higher susceptibilities obtained from these expansions, yields results consistent with the widely accepted ideas, based on the renormalization group and the constructive approach to Euclidean quantum field theory, concerning the no-interaction ("triviality") property of the continuum (scaling) limit of spin-s Ising and lattice scalar-field models at and above the upper critical dimensionality.Comment: 17 pages, 10 figure

    N-vector spin models on the sc and the bcc lattices: a study of the critical behavior of the susceptibility and of the correlation length by high temperature series extended to order beta^{21}

    Get PDF
    High temperature expansions for the free energy, the susceptibility and the second correlation moment of the classical N-vector model [also known as the O(N) symmetric classical spin Heisenberg model or as the lattice O(N) nonlinear sigma model] on the sc and the bcc lattices are extended to order beta^{21} for arbitrary N. The series for the second field derivative of the susceptibility is extended to order beta^{17}. An analysis of the newly computed series for the susceptibility and the (second moment) correlation length yields updated estimates of the critical parameters for various values of the spin dimensionality N, including N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model], N=2 [the XY model], N=3 [the Heisenberg model]. For all values of N, we confirm a good agreement with the present renormalization group estimates. A study of the series for the other observables will appear in a forthcoming paper.Comment: Revised version to appear in Phys. Rev. B Sept. 1997. Revisions include an improved series analysis biased with perturbative values of the scaling correction exponents computed by A. I. Sokolov. Added a reference to estimates of exponents for the Ising Model. Abridged text of 19 pages, latex, no figures, no tables of series coefficient
    corecore