435,590 research outputs found

    Robust Image Sentiment Analysis Using Progressively Trained and Domain Transferred Deep Networks

    Full text link
    Sentiment analysis of online user generated content is important for many social media analytics tasks. Researchers have largely relied on textual sentiment analysis to develop systems to predict political elections, measure economic indicators, and so on. Recently, social media users are increasingly using images and videos to express their opinions and share their experiences. Sentiment analysis of such large scale visual content can help better extract user sentiments toward events or topics, such as those in image tweets, so that prediction of sentiment from visual content is complementary to textual sentiment analysis. Motivated by the needs in leveraging large scale yet noisy training data to solve the extremely challenging problem of image sentiment analysis, we employ Convolutional Neural Networks (CNN). We first design a suitable CNN architecture for image sentiment analysis. We obtain half a million training samples by using a baseline sentiment algorithm to label Flickr images. To make use of such noisy machine labeled data, we employ a progressive strategy to fine-tune the deep network. Furthermore, we improve the performance on Twitter images by inducing domain transfer with a small number of manually labeled Twitter images. We have conducted extensive experiments on manually labeled Twitter images. The results show that the proposed CNN can achieve better performance in image sentiment analysis than competing algorithms.Comment: 9 pages, 5 figures, AAAI 201

    Simple Text Mining for Sentiment Analysis of Political Figure Using Naive Bayes Classifier Method

    Full text link
    Text mining can be applied to many fields. One of the application is using text mining in digital newspaper to do politic sentiment analysis. In this paper sentiment analysis is applied to get information from digital news articles about its positive or negative sentiment regarding particular politician. This paper suggests a simple model to analyze digital newspaper sentiment polarity using naive Bayes classifier method. The model uses a set of initial data to begin with which will be updated when new information appears. The model showed promising result when tested and can be implemented to some other sentiment analysis problems.Comment: 5 pages, published in the Proceedings of the 7th ICT

    Automatic Dream Sentiment Analysis

    Get PDF
    In this position paper, we propose a first step toward automatic analysis of sentiments in dreams. 100 dreams were sampled from a dream bank created for a normative study of dreams. Two human judges assigned a score to describe dream sentiments. We ran four baseline algorithms in an attempt to automate the rating of sentiments in dreams. Particularly, we compared the General Inquirer (GI) tool, the Linguistic Inquiry and Word Count (LIWC), a weighted version of the GI lexicon and of the HM lexicon and a standard bag-of-words. We show that machine learning allows automating the human judgment with accuracy superior to majority class choice

    Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold

    Get PDF
    Sentiment analysis over Twitter offers organisations and individuals a fast and effective way to monitor the publics' feelings towards them and their competitors. To assess the performance of sentiment analysis methods over Twitter a small set of evaluation datasets have been released in the last few years. In this paper we present an overview of eight publicly available and manually annotated evaluation datasets for Twitter sentiment analysis. Based on this review, we show that a common limitation of most of these datasets, when assessing sentiment analysis at target (entity) level, is the lack of distinctive sentiment annotations among the tweets and the entities contained in them. For example, the tweet "I love iPhone, but I hate iPad" can be annotated with a mixed sentiment label, but the entity iPhone within this tweet should be annotated with a positive sentiment label. Aiming to overcome this limitation, and to complement current evaluation datasets, we present STS-Gold, a new evaluation dataset where tweets and targets (entities) are annotated individually and therefore may present different sentiment labels. This paper also provides a comparative study of the various datasets along several dimensions including: total number of tweets, vocabulary size and sparsity. We also investigate the pair-wise correlation among these dimensions as well as their correlations to the sentiment classification performance on different datasets

    Noise or music? Investigating the usefulness of normalisation for robust sentiment analysis on social media data

    Get PDF
    In the past decade, sentiment analysis research has thrived, especially on social media. While this data genre is suitable to extract opinions and sentiment, it is known to be noisy. Complex normalisation methods have been developed to transform noisy text into its standard form, but their effect on tasks like sentiment analysis remains underinvestigated. Sentiment analysis approaches mostly include spell checking or rule-based normalisation as preprocess- ing and rarely investigate its impact on the task performance. We present an optimised sentiment classifier and investigate to what extent its performance can be enhanced by integrating SMT-based normalisation as preprocessing. Experiments on a test set comprising a variety of user-generated content genres revealed that normalisation improves sentiment classification performance on tweets and blog posts, showing the model’s ability to generalise to other data genres
    corecore