230,469 research outputs found
Tailoring ferromagnetic chalcopyrites
If magnetic semiconductors are ever to find wide application in real
spintronic devices, their magnetic and electronic properties will require
tailoring in much the same way that band gaps are engineered in conventional
semiconductors. Unfortunately, no systematic understanding yet exists of how,
or even whether, properties such as Curie temperatures and band gaps are
related in magnetic semiconductors. Here we explore theoretically these and
other relationships within 64 members of a single materials class, the Mn-doped
II-IV-V2 chalcopyrites, three of which are already known experimentally to be
ferromagnetic semiconductors. Our first-principles results reveal a variation
of magnetic properties across different materials that cannot be explained by
either of the two dominant models of ferromagnetism in semiconductors. Based on
our results for structural, electronic, and magnetic properties, we identify a
small number of new stable chalcopyrites with excellent prospects for
ferromagnetism.Comment: 6 pages with 4 figures, plus 3 supplementary figures; to appear in
Nature Material
Magnetic oxide semiconductors
Magnetic oxide semiconductors, oxide semiconductors doped with transition
metal elements, are one of the candidates for a high Curie temperature
ferromagnetic semiconductor that is important to realize semiconductor
spintronics at room temperature. We review in this paper recent progress of
researches on various magnetic oxide semiconductors. The magnetization,
magneto-optical effect, and magneto-transport such as anomalous Hall effect are
examined from viewpoint of feasibility to evaluate the ferromagnetism. The
ferromagnetism of Co-doped TiO2 and transition metal-doped ZnO is discussed.Comment: 26 pages, 5 tables, 6 figure
Ferromagnetic semiconductors
The current status and prospects of research on ferromagnetism in
semiconductors are reviewed. The question of the origin of ferromagnetism in
europium chalcogenides, chromium spinels and, particularly, in diluted magnetic
semiconductors is addressed. The nature of electronic states derived from 3d of
magnetic impurities is discussed in some details. Results of a quantitative
comparison between experimental and theoretical results, notably for Mn-based
III-V and II-VI compounds, are presented. This comparison demonstrates that the
current theory of the exchange interactions mediated by holes in the valence
band describes correctly the values of Curie temperatures T_C magnetic
anisotropy, domain structure, and magnetic circular dichroism. On this basis,
chemical trends are examined and show to lead to the prediction of
semiconductor systems with T_C that may exceed room temperature, an expectation
that are being confirmed by recent findings. Results for materials containing
magnetic ions other than Mn are also presented emphasizing that the double
exchange involving hoping through d states may operate in those systems.Comment: 18 pages, 8 figures; special issue of Semicon. Sci. Technol. on
semiconductor spintronic
Schottky-based band lineups for refractory semiconductors
An overview is presented of band alignments for small-lattice parameter, refractory semiconductors. The band alignments are estimated empirically through the use of available Schottky barrier height data, and are compared to theoretically predicted values. Results for tetrahedrally bonded semiconductors with lattice constant values in the range from C through ZnSe are presented. Based on the estimated band alignments and the recently demonstrated p-type dopability of GaN, we propose three novel heterojunction schemes which seek to address inherent difficulties in doping or electrical contact to wide-gap semiconductors such as ZnO, ZnSe, and ZnS
- …