116,130 research outputs found
A deep matrix factorization method for learning attribute representations
Semi-Non-negative Matrix Factorization is a technique that learns a
low-dimensional representation of a dataset that lends itself to a clustering
interpretation. It is possible that the mapping between this new representation
and our original data matrix contains rather complex hierarchical information
with implicit lower-level hidden attributes, that classical one level
clustering methodologies can not interpret. In this work we propose a novel
model, Deep Semi-NMF, that is able to learn such hidden representations that
allow themselves to an interpretation of clustering according to different,
unknown attributes of a given dataset. We also present a semi-supervised
version of the algorithm, named Deep WSF, that allows the use of (partial)
prior information for each of the known attributes of a dataset, that allows
the model to be used on datasets with mixed attribute knowledge. Finally, we
show that our models are able to learn low-dimensional representations that are
better suited for clustering, but also classification, outperforming
Semi-Non-negative Matrix Factorization, but also other state-of-the-art
methodologies variants.Comment: Submitted to TPAMI (16-Mar-2015
Unsupervised Domain Adaptation using Graph Transduction Games
Unsupervised domain adaptation (UDA) amounts to assigning class labels to the
unlabeled instances of a dataset from a target domain, using labeled instances
of a dataset from a related source domain. In this paper, we propose to cast
this problem in a game-theoretic setting as a non-cooperative game and
introduce a fully automatized iterative algorithm for UDA based on graph
transduction games (GTG). The main advantages of this approach are its
principled foundation, guaranteed termination of the iterative algorithms to a
Nash equilibrium (which corresponds to a consistent labeling condition) and
soft labels quantifying the uncertainty of the label assignment process. We
also investigate the beneficial effect of using pseudo-labels from linear
classifiers to initialize the iterative process. The performance of the
resulting methods is assessed on publicly available object recognition
benchmark datasets involving both shallow and deep features. Results of
experiments demonstrate the suitability of the proposed game-theoretic approach
for solving UDA tasks.Comment: Oral IJCNN 201
Semi-Supervised Learning for Neural Keyphrase Generation
We study the problem of generating keyphrases that summarize the key points
for a given document. While sequence-to-sequence (seq2seq) models have achieved
remarkable performance on this task (Meng et al., 2017), model training often
relies on large amounts of labeled data, which is only applicable to
resource-rich domains. In this paper, we propose semi-supervised keyphrase
generation methods by leveraging both labeled data and large-scale unlabeled
samples for learning. Two strategies are proposed. First, unlabeled documents
are first tagged with synthetic keyphrases obtained from unsupervised keyphrase
extraction methods or a selflearning algorithm, and then combined with labeled
samples for training. Furthermore, we investigate a multi-task learning
framework to jointly learn to generate keyphrases as well as the titles of the
articles. Experimental results show that our semi-supervised learning-based
methods outperform a state-of-the-art model trained with labeled data only.Comment: To appear in EMNLP 2018 (12 pages, 7 figures, 6 tables
- …