220 research outputs found
Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective
In this paper we address the classical hybrid flow shop scheduling problem with makespan objective. As this problem is known to be NP-hard and a very common layout in real-life manufacturing scenarios, many studies have been proposed in the literature to solve it. These contributions use different solution representations of the feasible schedules, each one with its own advantages and disadvantages. Some of them do not guarantee that all feasible semiactive schedules are represented in the space of solutions –thus limiting in principle their effectiveness– but, on the other hand, these simpler solution representations possess clear advantages in terms of having consistent neighbourhoods with well-defined neighbourhood moves. Therefore, there is a trade-off between the solution space reduction and the ability to conduct an efficient search in this reduced solution space. This trade-off is determined by two aspects, i.e. the extent of the solution space reduction, and the quality of the schedules left aside by this solution space reduction. In this paper, we analyse the efficiency of the different solution representations employed in the literature for the problem. More specifically, we first establish the size of the space of semiactive schedules achieved by the different solution representations and, secondly, we address the issue of the quality of the schedules that can be achieved by these representations using the optimal solutions given by several MILP models and complete enumeration. The results obtained may contribute to design more efficient algorithms for the hybrid flow shop scheduling problem.Ministerio de Ciencia e Innovación DPI2016-80750-
MILP-based local search procedures for minimizing total tardiness in the No-idle Permutation Flowshop Problem
We consider the No-idle Permutation Flowshop Scheduling Problem (NPFSP) with a total tardiness criterion. We present two Mixed Integer Linear Programming (MILP) formulations based on positional and precedence variables, respectively. We study six local search procedures that explore two different neighborhoods by exploiting the MILP formulations. Our computational experiments show that two of the proposed procedures strongly outperform the state-of-the-art metaheuristic. We update 63% of the best known solutions of the instances in Taillards’ benchmark, and 77% if we exclude those instances for which we proved that the previous best known solutions are optimal
Scheduling flow lines with buffers by ant colony digraph
This work starts from modeling the scheduling of n jobs on m machines/stages as flowshop with buffers in manufacturing. A mixed-integer linear programing model is presented, showing that buffers of size n - 2 allow permuting sequences of jobs between stages. This model is addressed in the literature as non-permutation flowshop scheduling (NPFS) and is described in this article by a disjunctive graph (digraph) with the purpose of designing specialized heuristic and metaheuristics algorithms for the NPFS problem. Ant colony optimization (ACO) with the biologically inspired mechanisms of learned desirability and pheromone rule is shown to produce natively eligible schedules, as opposed to most metaheuristics approaches, which improve permutation solutions found by other heuristics. The proposed ACO has been critically compared and assessed by computation experiments over existing native approaches. Most makespan upper bounds of the established benchmark problems from Taillard (1993) and Demirkol, Mehta, and Uzsoy (1998) with up to 500 jobs on 20 machines have been improved by the proposed ACO
Performance Models for Data Transfers: A Case Study with Molecular Chemistry Kernels
With increasing complexity of hardwares, systems with different memory nodes
are ubiquitous in High Performance Computing (HPC). It is paramount to develop
strategies to overlap the data transfers between memory nodes with computations
in order to exploit the full potential of these systems. In this article, we
consider the problem of deciding the order of data transfers between two memory
nodes for a set of independent tasks with the objective to minimize the
makespan. We prove that with limited memory capacity, obtaining the optimal
order of data transfers is a NP-complete problem. We propose several heuristics
for this problem and provide details about their favorable situations. We
present an analysis of our heuristics on traces, obtained by running 2
molecular chemistry kernels, namely, Hartree-Fock (HF) and Coupled Cluster
Single Double (CCSD) on 10 nodes of an HPC system. Our results show that some
of our heuristics achieve significant overlap for moderate memory capacities
and are very close to the lower bound of makespan
The Distributed and Assembly Scheduling Problem
Tesis por compendio[EN] Nowadays, manufacturing systems meet different new global challenges and
the existence of a collaborative manufacturing environment is essential to face
with. Distributed manufacturing and assembly systems are two manufacturing
systems which allow industries to deal with some of these challenges. This
thesis studies a production problem in which both distributed manufacturing
and assembly systems are considered. Although distributed manufacturing
systems and assembly systems are well-known problems and have been extensively
studied in the literature, to the best of our knowledge, considering
these two systems together as in this thesis is the first effort in the literature.
Due to the importance of scheduling optimization on production performance,
some different ways to optimize the scheduling of the considered problem are
discussed in this thesis.
The studied scheduling setting consists of two stages: A production and an
assembly stage. Various production centers make the first stage. Each of these
centers consists of several machines which are dedicated to manufacture jobs.
A single assembly machine is considered for the second stage. The produced
jobs are assembled on the assembly machine to form final products through a
defined assembly program.
In this thesis, two different problems regarding two different production
configurations for the production centers of the first stage are considered.
The first configuration is a flowshop that results in what we refer to as the
Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP).
The second problem is referred to as the Distributed Parallel Machine and
Assembly Scheduling Problem (DPMASP), where unrelated parallel machines
configure the production centers. Makespan minimization of the product on the
assembly machine located in the assembly stage is considered as the objective
function for all considered problems.
In this thesis some extensions are considered for the studied problems
so as to bring them as close as possible to the reality of production shops.
In the DAPFSP, sequence dependent setup times are added for machines in
both production and assembly stages. Similarly, in the DPMASP, due to
technological constraints, some defined jobs can be processed only in certain
factories.
Mathematical models are presented as an exact solution for some of the
presented problems and two state-of-art solvers, CPLEX and GUROBI are
used to solve them. Since these solvers are not able to solve large sized
problems, we design and develop heuristic methods to solve the problems. In
addition to heuristics, some metaheuristics are also designed and proposed to
improve the solutions obtained by heuristics. Finally, for each proposed problem,
the performance of the proposed solution methods is compared through
extensive computational and comprehensive ANOVA statistical analysis.[ES] Los sistemas de producción se enfrentan a retos globales en los que el concepto
de fabricación colaborativa es crucial para poder tener éxito en el entorno
cambiante y complejo en el que nos encontramos. Una caracterÃstica de los sistemas
productivos que puede ayudar a lograr este objetivo consiste en disponer
de una red de fabricación distribuida en la que los productos se fabriquen en
localizaciones diferentes y se vayan ensamblando para obtener el producto
final. En estos casos, disponer de modelos y herramientas para mejorar el
rendimiento de sistemas de producción distribuidos con ensamblajes es una
manera de asegurar la eficiencia de los mismos.
En esta tesis doctoral se estudian los sistemas de fabricación distribuidos
con operaciones de ensamblaje. Los sistemas distribuidos y los sistemas con
operaciones de ensamblaje han sido estudiados por separado en la literatura.
De hecho, no se han encontrado estudios de sistemas con ambas caracterÃsticas
consideradas de forma conjunta.
Dada la complejidad de considerar conjuntamente ambos tipos de sistemas
a la hora de realizar la programación de la producción en los mismos, se ha
abordado su estudio considerando un modelo bietápico en la que en la primera
etapa se consideran las operaciones de producción y en la segunda se plantean
las operaciones de ensamblaje.
Dependiendo de la configuración de la primera etapa se han estudiado dos
variantes. En la primera variante se asume que la etapa de producción está
compuesta por sendos sistemas tipo flowshop en los que se fabrican los componentes
que se ensamblan en la segunda etapa (Distributed Assembly Permutation
Flowshop Scheduling Problem o DAPFSP). En la segunda variante
se considera un sistema de máquinas en paralelo no relacionadas (Distributed
Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambas
variantes se optimiza la fecha de finalización del último trabajo secuenciado
(Cmax) y se contempla la posibilidad que existan tiempos de cambio (setup)
dependientes de la secuencia de trabajos fabricada. También, en el caso
DPMASP se estudia la posibilidad de prohibir o no el uso de determinadas
máquinas de la etapa de producción.
Se han desarrollado modelos matemáticos para resolver algunas de las
variantes anteriores. Estos modelos se han resuelto mediante los programas
CPLEX y GUROBI en aquellos casos que ha sido posible. Para las instancias
en los que el modelo matemático no ofrecÃa una solución al problema se han
desarrollado heurÃsticas y metaheurÃsticas para ello.
Todos los procedimientos anteriores han sido estudiados para determinar
el rendimiento de los diferentes algoritmos planteados. Para ello se ha realizado
un exhaustivo estudio computacional en el que se han aplicado técnicas
ANOVA.
Los resultados obtenidos en la tesis permiten avanzar en la comprensión
del comportamiento de los sistemas productivos distribuidos con ensamblajes,
definiendo algoritmos que permiten obtener buenas soluciones a este tipo de
problemas tan complejos que aparecen tantas veces en la realidad industrial.[CA] Els sistemes de producció s'enfronten a reptes globals en què el concepte de
fabricació col.laborativa és crucial per a poder tindre èxit en l'entorn canviant
i complex en què ens trobem. Una caracterÃstica dels sistemes productius
que pot ajudar a aconseguir este objectiu consistix a disposar d'una xarxa de
fabricació distribuïda en la que els productes es fabriquen en localitzacions
diferents i es vagen acoblant per a obtindre el producte final. En estos casos,
disposar de models i ferramentes per a millorar el rendiment de sistemes de
producció distribuïts amb acoblaments és una manera d'assegurar l'eficiència
dels mateixos.
En esta tesi doctoral s'estudien els sistemes de fabricació distribuïts amb
operacions d'acoblament. Els sistemes distribuïts i els sistemes amb operacions
d'acoblament han sigut estudiats per separat en la literatura però, en allò
que es coneix, no s'han trobat estudis de sistemes amb ambdós caracterÃstiques
conjuntament. Donada la complexitat de considerar conjuntament ambdós
tipus de sistemes a l'hora de realitzar la programació de la producció en els
mateixos, s'ha abordat el seu estudi considerant un model bietà pic en la que
en la primera etapa es consideren les operacions de producció i en la segona es
plantegen les operacions d'acoblament.
Depenent de la configuració de la primera etapa s'han estudiat dos variants.
En la primera variant s'assumix que l'etapa de producció està composta per
sengles sistemes tipus flowshop en els que es fabriquen els components que
s'acoblen en la segona etapa (Distributed Assembly Permutation Flowshop
Scheduling Problem o DAPFSP). En la segona variant es considera un sistema
de mà quines en paral.lel no relacionades (Distributed Parallel Machine and
Assembly Scheduling Problem o DPMASP). En ambdós variants s'optimitza
la data de finalització de l'últim treball seqüenciat (Cmax) i es contempla la
possibilitat que existisquen temps de canvi (setup) dependents de la seqüència
de treballs fabricada. També, en el cas DPMASP s'estudia la possibilitat de
prohibir o no l'ús de determinades mà quines de l'etapa de producció.
S'han desenvolupat models matemà tics per a resoldre algunes de les variants
anteriors. Estos models s'han resolt per mitjà dels programes CPLEX
i GUROBI en aquells casos que ha sigut possible. Per a les instà ncies en
què el model matemà tic no oferia una solució al problema s'han desenrotllat
heurÃstiques i metaheurÃsticas per a això. Tots els procediments anteriors han
sigut estudiats per a determinar el rendiment dels diferents algoritmes plantejats.
Per a això s'ha realitzat un exhaustiu estudi computacional en què s'han
aplicat tècniques ANOVA.
Els resultats obtinguts en la tesi permeten avançar en la comprensió del
comportament dels sistemes productius distribuïts amb acoblaments, definint
algoritmes que permeten obtindre bones solucions a este tipus de problemes
tan complexos que apareixen tantes vegades en la realitat industrial.Hatami, S. (2016). The Distributed and Assembly Scheduling Problem [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64072TESISCompendi
Efficient heuristics for the parallel blocking flow shop scheduling problem
We consider the NP-hard problem of scheduling n jobs in F identical parallel flow shops, each consisting of a series of m machines, and doing so with a blocking constraint. The applied criterion is to minimize the makespan, i.e., the maximum completion time of all the jobs in F flow shops (lines). The Parallel Flow Shop Scheduling Problem (PFSP) is conceptually similar to another problem known in the literature as the Distributed Permutation Flow Shop Scheduling Problem (DPFSP), which allows modeling the scheduling process in companies with more than one factory, each factory with a flow shop configuration. Therefore, the proposed methods can solve the scheduling problem under the blocking constraint in both situations, which, to the best of our knowledge, has not been studied previously. In this paper, we propose a mathematical model along with some constructive and improvement heuristics to solve the parallel blocking flow shop problem (PBFSP) and thus minimize the maximum completion time among lines. The proposed constructive procedures use two approaches that are totally different from those proposed in the literature. These methods are used as initial solution procedures of an iterated local search (ILS) and an iterated greedy algorithm (IGA), both of which are combined with a variable neighborhood search (VNS). The proposed constructive procedure and the improved methods take into account the characteristics of the problem. The computational evaluation demonstrates that both of them –especially the IGA– perform considerably better than those algorithms adapted from the DPFSP literature.Peer ReviewedPostprint (author's final draft
Energy Efficient Manufacturing Scheduling: A Systematic Literature Review
The social context in relation to energy policies, energy supply, and
sustainability concerns as well as advances in more energy-efficient
technologies is driving a need for a change in the manufacturing sector. The
main purpose of this work is to provide a research framework for
energy-efficient scheduling (EES) which is a very active research area with
more than 500 papers published in the last 10 years. The reason for this
interest is mostly due to the economic and environmental impact of considering
energy in production scheduling. In this paper, we present a systematic
literature review of recent papers in this area, provide a classification of
the problems studied, and present an overview of the main aspects and
methodologies considered as well as open research challenges
Solving blocking flowshop scheduling problem with makespan criterion using q-learning-based iterated greedy algorithms
This study proposes Q-learning-based iterated greedy (IGQ) algorithms to solve the blocking flowshop scheduling problem with the makespan criterion. Q learning is a model-free machine intelligence technique, which is adapted into the traditional iterated greedy (IG) algorithm to determine its parameters, mainly, the destruction size and temperature scale factor, adaptively during the search process. Besides IGQ algorithms, two different mathematical modeling techniques. One of these techniques is the constraint programming (CP) model, which is known to work well with scheduling problems. The other technique is the mixed integer linear programming (MILP) model, which provides the mathematical definition of the problem. The introduction of these mathematical models supports the validation of IGQ algorithms and provides a comparison between different exact solution methodologies. To measure and compare the performance of IGQ algorithms and mathematical models, extensive computational experiments have been performed on both small and large VRF benchmarks available in the literature. Computational results and statistical analyses indicate that IGQ algorithms generate substantially better results when compared to non-learning IG algorithms
Dynamic set-up rules for hybrid flow shop scheduling with parallel batching machines
An S-stage hybrid (or flexible) flow shop, with sequence-independent uniform set-up times, parallel batching machines with compatible parallel batch families (like in casting or heat treatments in furnaces, chemical or galvanic baths, painting in autoclave, etc.) has been analysed with the purpose of reducing the number of tardy jobs (and the makespan); in Graham’s notation: FPB(m_1, m_2, … , m_S)|p-batch, STsi,b|SUM(Ui). Jobs are sorted dynamically (at each new delivery); batches are closed within sliding (or rolling) time windows and processed in parallel by multiple identical machines. Computation experiments have shown the better performance on benchmarks of the two proposed heuristics based on new formulations of the critical ratio (CRsetup) considering the ratio of allowance set-up and processing time in the scheduling horizon, which improves the weighted modified operation due date rule
- …