399,779 research outputs found
How far can Tarzan jump?
The tree-based rope swing is a popular recreation facility, often installed
in outdoor areas, giving pleasure to thrill-seekers. In the setting, one drops
down from a high platform, hanging from a rope, then swings at a great speed
like "Tarzan", and finally jumps ahead to land on the ground. The question now
arises: How far can Tarzan jump by the swing? In this article, I present an
introductory analysis of the Tarzan swing mechanics, a big pendulum-like swing
with Tarzan himself attached as weight. The analysis enables determination of
how farther forward Tarzan can jump using a given swing apparatus. The
discussion is based on elementary mechanics and, therefore, expected to provide
rich opportunities for investigations using analytic and numerical methods.Comment: 8 pages, 4 figure
Using Swing Resistance and Assistance to Improve Gait Symmetry in Individuals Post-Stroke
A major characteristic of hemiplegic gait observed in individuals post-stroke is spatial and temporal asymmetry, which may increase energy expenditure and the risk of falls. The purpose of this study was to examine the effects of swing resistance/assistance applied to the affected leg on gait symmetry in individuals post-stroke. We recruited 10 subjects with chronic stroke who demonstrated a shorter step length with their affected leg in comparison to the non-affected leg during walking. They participated in two test sessions for swing resistance and swing assistance, respectively. During the adaptation period, subjects counteracted the step length deviation caused by the applied swing resistance force, resulting in an aftereffect consisting of improved step length symmetry during the post-adaptation period. In contrast, subjects did not counteract step length deviation caused by swing assistance during adaptation period and produced no aftereffect during the post-adaptation period. Locomotor training with swing resistance applied to the affected leg may improve step length symmetry through error-based learning. Swing assistance reduces errors in step length during stepping; however, it is unclear whether this approach would improve step length symmetry. Results from this study may be used to develop training paradigms for improving gait symmetry of stroke survivors
Solenoid-operated swing-check valve
Modification of spring-loaded swing-check valve for solenoid operation provides low-vacuum swing-check valve which can be operated remotely
Stepping Responses to Treadmill Perturbations vary with Severity of Motor Deficits in Human SCI
In this study, we investigated the responses to tread perturbations during human stepping on a treadmill. Our approach was to test the effects of perturbations to a single leg using a split-belt treadmill in healthy participants and in participants with varying severity of spinal cord injury (SCI). We recruited 11 people with incomplete SCI and 5 noninjured participants. As participants walked on an instrumented treadmill, the belt on one side was stopped or accelerated briefly during mid to late stance. A majority of participants initiated an unnecessary swing when the treadmill was stopped in mid stance, although the likelihood of initiating a step was decreased in participants with more severe SCI. Accelerating or decelerating one belt of the treadmill during stance altered the characteristics of swing. We observed delayed swing initiation when the belt was decelerated (i.e. the hip was in a more flexed position at time of swing) and advanced swing initiation with acceleration (i.e. hip extended at swing initiation). Further, the timing and leg posture of heel strike appeared to remain constant, reflected by a sagittal plane hip angle at heel strike that remained the same regardless of the perturbation. In summary, our results supported the current understanding of the role of sensory feedback and central drive in the control of stepping in participants with incomplete SCI and noninjured participants. In particular, the observation of unnecessary swing during a stop perturbation highlights the interdependence of central and sensory drive in walking control
An overview of out-of-step protection in power systems
Power system is subjected to an extensive variety of little or bigger disturbance to the system during the operation. The power system that designed as one of the main requirement is to survive from the larger type of disturbances like faults. The power swing in certain system is the variation in three phase power flow in the power system. This paper mainly discussed the power swing and distance relay and the effect of the power swing on the distance relay and demonstrate about the basic power system stability and power swing phenomena. Moreover, out of step protection and detection applications are revised as well. At the end, the paper also demonstrated the past study of out of step application of TNB 275 KV network
- …