684,391 research outputs found

    Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.

    Get PDF
    Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local solids concentration and local axial solids velocity in dense gas-solid two phase flows. This system has been applied to study hydrodynamics of a cold-flow circulating fluidized bed unit operated in the dense flow regime (uD: 7.5¿15 m s¿1 and Gs = 100¿400 kg m¿2 s¿). With increasing solids mass flux, at constant superficial gas velocity, lateral solids segregation became more pronounced (i.e. extent of development of core-annulus structure) while the radial profiles of axial solids velocity hardly changed. A decrease in superficial gas velocity, at constant solids mass flux, also augmented the lateral solids segregation. The axial solids velocity decreased over the entire tube radius, although the shape of the profiles showed no strong dependence with respect to the superficial gas velocity. Average solids mass fluxes calculated from the measured local values of solids concentration and solids velocity exceeded the imposed solids mass flux, a finding which could be explained by the downflow observed visually of solid particles close to the tube wall. In addition, cross-sectional averaged solids concentrations obtained on the basis of the optical measuring system and those obtained from the pressure gradient measurements showed satisfactory agreement

    A small scale regularly packed circulating fluidized bed. Part I: Hydrodynamics.

    Get PDF
    The present investigation is based on the idea of intensifying the gas¿solids contact in a circulating fluidized bed by introducing obstacles into it. Such obstacles may effectively suppress radial inhomogeneities in the solids flux and concentration, increase the dynamic solids hold-up, and break up solids clusters. This article (Part I) deals with the hydrodynamics (pressure drop and solids hold-up) investigated at ambient conditions, for cocurrent upward flow of air and microsize solid particles (FCC, 70 µm diameter) over a regularly structured inert packing introduced into the riser part of a circulating fluidized bed unit. The packed section has a height of 0.48 m, a cross-sectional area of 0.06 × 0.06 m2 and contains regularly-stacked 0.01 m diameter Perspex bars as the obstacles meant to enhance the gas¿solids contact. Slide-valves mounted above and below the packed section can be used to trap the solids inventory and determine the (dynamic) solids hold-up. Gas and solids mass fluxes have been varied in the range of 0.7 < Gg < 4.4 and O < Gs < 15 kg m-2s-2, respectively. Part II will report on the results of gas¿solids mass transfer measurements, which have been carried out in the same set-up at comparable experimental conditions. Results of this work show that: (i) the pressure gradient over the packed section increases linearly with increasing solids mass flux, but faster than linearly with increasing applied gas mass flux, (ii) the dynamic solids volume fraction can be described quite well by the correlation ß dyn = 0.0084 GsGg-1.22 for almost the entire range of applied gas and solids mass fluxes, (iii) the value for the solids friction factor derived for the gas flux range 0.7 < Gg < 3.7 kg (m-2s-1) varies from 1.4 to 2.5 and is linear with the solids volume fraction. These fs values are about 2 to 3 decades higher than those obtained from fs correlations derived for dilute-phase pneumatic conveying lines operated under the same experimental conditions

    Structural lubricity: Role of dimension and symmetry

    Full text link
    When two chemically passivated solids are brought into contact, interfacial interactions between the solids compete with intrabulk elastic forces. The relative importance of these interactions, which are length-scale dependent, will be estimated using scaling arguments. If elastic interactions dominate on all length scales, solids will move as essentially rigid objects. This would imply superlow kinetic friction in UHV, provided wear was absent. The results of the scaling study depend on the symmetry of the surfaces and the dimensionalities of interface and solids. Some examples are discussed explicitly such as contacts between disordered three-dimensional solids and linear bearings realized from multiwall carbon nanotubes.Comment: 7 pages, 1 figur

    Gravity flow rate of solids through orifices and pipes

    Get PDF
    Lock-hopper systems are the most common means for feeding solids to and from coal conversion reactor vessels. The rate at which crushed solids flow by gravity through the vertical pipes and valves in lock-hopper systems affects the size of pipes and valves needed to meet the solids-handling requirements of the coal conversion process. Methods used to predict flow rates are described and compared with experimental data. Preliminary indications are that solids-handling systems for coal conversion processes are over-designed by a factor of 2 or 3

    A small scale regularly packed circulating fluidized bed. Part II: Mass transfer

    Get PDF
    The underlying objective of the present study is to increase gas¿solids contact in a circulating fluidized bed by the introduction of obstacles in the riser portion. The presence of such obstacles leads to suppression of radial inhomogeneities in the solids mass flux and concentration, and break-up of solids clusters. At ambient conditions, gas¿solids mass transfer was investigated for cocurrent upward flow of air and microsize solid particles (FCC, 70 ¿m diameter) over a regularly structured inert packing introduced into the riser part of a circulating fluidized bed unit. The packed section has a height of 0.48 m, a cross-sectional area of 0.06 × O.06 m2, and contains regularly stacked 0.01 m diameter Perspex bars as the obstacles meant to enhance the gas¿solids contact. Gas mass fluxes used were 1.4 and 2.7 kg m¿2 s¿1. Solids mass fluxes were varied in the range 0Gs 12 kg m¿2 s¿1. Experimental mass transfer data were obtained by applying the method of adsorption of naphthalene vapor on FCC particles. A conservative estimate of the apparent gas¿solids mass transfer coefficient kg* could be derived from the naphthalene vapor concentration profile along the packed section on the basis of a plug-flow-model interpretation, while assuming single-particle behaviour and neglecting intraparticle diffusion effects. Such kg* values appear to increase with increasing gas mass flux, but decrease with increasing solids mass flux (and consequently increasing solids volume fraction) probably due to the corresponding increase in particle shielding. Comparison of the present results with available literature data for similar solid materials suggests that the effect of the packing inserted into the CFB is significant: the Sherwood numbers derived from the present study are relatively high

    Interaction between suspended and settled solid particles in cassava wastewater

    Get PDF
    Cassava (Manihot Esculenta, Crantz) is a very important staple food in most developing countries. During its processing into cassava flour or garri, wastewaters are generated and are indiscriminately discharged into the public sewers or into the environment and in some cases; the fermented wastewater is usually poured into latrines with the aim of degrading sewage. This study is aimed at finding out the interaction between the suspended solids and settled solids of cassava wastewater. Cassava wastewater was collected from a cassava processing plant at Ogige main market in Nsukka town and monitored for 14 days. Half of the samples collected were left unstirred and the other halves were continuously stirred. The parameters monitored include biochemical oxygen demand (BOD5), suspended solids, coliform, cyanide and pH. Results showed that there was a 73.4, 27.5 and 99.9% reduction in the settled solids for BOD5, suspended solids and coliform bacteria respectively, for the stirred samples while there was a 97.8, 44 and 99.9% reduction in the settled solids for BOD5, suspended solids and coliform bacteria respectively, for the unstirred samples. Overall, the unstirred samples performed better than the stirred samples with respect to BOD5 and SS removal. The result of this work will guide sanitary engineers in the selection of influent parameters for the effective design of treatment units
    corecore