2,126 research outputs found

    SB9: The Ninth Catalogue of Spectroscopic Binary Orbits

    Get PDF
    The Ninth Catalogue of Spectroscopic Binary Orbits (http://sb9.astro.ulb.ac.be) continues the series of compilations of spectroscopic orbits carried out over the past 35 years by Batten and collaborators. As of 2004 May 1st, the new Catalogue holds orbits for 2,386 systems. Some essential differences between this catalogue and its predecessors are outlined and three straightforward applications are presented: (1) Completeness assessment: period distribution of SB1s and SB2s; (2) Shortest periods across the H-R diagram; (3) Period-eccentricity relation.Comment: Accepte for publication in A&A, 6 pages, 6 figure

    Astrometric orbits of SB9 stars

    Full text link
    Hipparcos Intermediate Astrometric Data (IAD) have been used to derive astrometric orbital elements for spectroscopic binaries from the newly released Ninth Catalogue of Spectroscopic Binary Orbits (SB9). Among the 1374 binaries from SB9 which have an HIP entry, 282 have detectable orbital astrometric motion (at the 5% significance level). Among those, only 70 have astrometric orbital elements that are reliably determined (according to specific statistical tests discussed in the paper), and for the first time for 20 systems, representing a 10% increase relative to the 235 DMSA/O systems already present in the Hipparcos Double and Multiple Systems Annex. The detection of the astrometric orbital motion when the Hipparcos IAD are supplemented by the spectroscopic orbital elements is close to 100% for binaries with only one visible component, provided that the period is in the 50 - 1000 d range and the parallax is larger than 5 mas. This result is an interesting testbed to guide the choice of algorithms and statistical tests to be used in the search for astrometric binaries during the forthcoming ESA Gaia mission. Finally, orbital inclinations provided by the present analysis have been used to derive several astrophysical quantities. For instance, 29 among the 70 systems with reliable astrometric orbital elements involve main sequence stars for which the companion mass could be derived. Some interesting conclusions may be drawn from this new set of stellar masses, like the enigmatic nature of the companion to the Hyades F dwarf HIP 20935. This system has a mass ratio of 0.98 but the companion remains elusive.Comment: Astronomy & Astrophysics, in press (16 pages, 12 figures); also available at http://www.astro.ulb.ac.be/Html/ps.html#Astrometr

    Low-complexity smart antenna methods for third-generation W-CDMA systems

    Get PDF

    Twins Among the Low Mass Spectroscopic Binaries

    Full text link
    We report an analysis of twins of spectral types F or later in the 9th Catalog of Spectroscopic Binaries (SB9). Twins, the components of binaries with mass ratio within 2% of 1.0, are found among the binaries with primaries of F and G spectral type. They are most prominent among the binaries with periods less than 43 days, a cutoff first identified by Lucy. Within the subsample of binaries with P<43 days, the twins do not differ from the other binaries in their distributions of periods (median P~7d), masses, or orbital eccentricities. Combining the mass ratio distribution in the SB9 in the mass range 0.6 to 0.85 Msun with that measured by Mazeh et al. for binaries in the Carney-Latham high proper motion survey, we estimate that the frequency of twins in a large sample of spectroscopic binaries is about 3%. Current theoretical understanding indicates that accretion of high specific angular momentum material by a protobinary tends to equalize its masses. We speculate that the excess of twins is produced in those star forming regions where the accretion processes were able to proceed to completion for a minority of protobinaries. This predicts that the components of a young twin may appear to differ in age and that, in a sample of spectroscopic binaries in a star formation region, the twins are, on average, older than the binaries with mass ratios much smaller than 1.Comment: Accepted by the Astronomical Journa

    The role of dark matter in the galaxy mass-size relationship

    Full text link
    The observed relationship between stellar mass and effective radius for early type galaxies, pointed out by many authors, is interpreted in the context of Clausius' virial maximum theory. In this view, it is strongly underlined that the key of the above mentioned correlation is owing to the presence of a deep link between cosmology and the existence of the galaxy Fundamental Plane. Then the ultimate meaning is: understanding visible mass - size correlation and/or Fundamental Plane means understanding how galaxies form. The mass - size relationship involves baryon (mainly stellar) mass and its typical dimension related to the light, but it gets memory of the cosmological mass variance at the equivalence epoch. The reason is that the baryonic component virializes by sharing virial energy in about equal amount between baryons and dark matter, this sharing depending, in turn, on the steepness of the dark matter distribution. The general strategy consists in using the two-component tensor virial theorem for determining the virialized baryonic configurations. A King and a Zhao density profile are assumed for the inner baryonic and the outer dark matter component, respectively, at the end of the relaxation phase. All the considerations are restricted to spherical symmetry for simplicity. The effect of changing the dark-to-baryon mass ratio, m, is investigated inside a LambdaCDM scenario. A theoretical mass - size relation is expressed for the baryonic component, which fits fairly well to the data from a recently studied galaxy sample. Finally, the play of intrinsic dispersion on the mass ratio, m, is discussed in the light of the cusp/core problem and some consequences are speculated about the existence of a limit, m_l, expected by the theory.Comment: 36 pages, 8 figures (Accepted for publication in New Astronomy
    corecore