99,510 research outputs found
Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead
Fine and ultrafine metallic particulatematters (PMs) are emitted frommetallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer ofmetals andmetalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM(Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting fromthe emissions of a battery-recycling factory.Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO3 and organic Pb). Some compounds were internalized in their primary form (PbSO4) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter
Assessment of socio-economic configuration of value chains : a proposed analysis framework to facilitate integration of small rural producers with global agribusiness
Value chain analysis is an important tool to assess and enhance the performance of agribusiness. This paper analyzes the empirical application of a conceptual framework known as the Rural Web to evaluate the socio-economic complexity of a specific agribusiness value chain. This can be used as a complementary approach to traditional value chain analysis. The proposed framework goes beyond linear descriptions of product flows and examines how supply chains are built, shaped and reproduced over time and space, while considering social, cultural, environmental and political aspects. The results demonstrate that the proposed framework is a suitable method for value chain analysis, principally for those whose early stages are based on small and medium-sized rural actors. The Rural Web analysis offers decision-makers a platform to identify key actors not traditionally considered in value chain analysis, as well as the social interrelationships that occur at different dimensions. It also enables the identification of corrective and preventive measures to enhance agribusiness value chains
The dual nature of trehalose in citrus canker disease: A virulence factor for Xanthomonas citri subsp. citri and a trigger for plant defence responses
Xanthomonas citri subsp. citri (Xcc) is a bacterial pathogen that causes citrus canker in susceptible Citrus spp. The Xcc genome contains genes encoding enzymes from three separate pathways of trehalose biosynthesis. Expression of genes encoding trehalose-6-phosphate synthase (otsA) and trehalose phosphatase (otsB) was highly induced during canker development, suggesting that the two-step pathway of trehalose biosynthesis via trehalose-6-phosphate has a function in pathogenesis. This pathway was eliminated from the bacterium by deletion of the otsA gene. The resulting XccΔotsA mutant produced less trehalose than the wild-type strain, was less resistant to salt and oxidative stresses, and was less able to colonize plant tissues. Gene expression and proteomic analyses of infected leaves showed that infection with XccΔotsA triggered only weak defence responses in the plant compared with infection with Xcc, and had less impact on the host plant's metabolism than the wild-type strain. These results suggested that trehalose of bacterial origin, synthesized via the otsA-otsB pathway, in Xcc, plays a role in modifying the host plant's metabolism to its own advantage but is also perceived by the plant as a sign of pathogen attack. Thus, trehalose biosynthesis has both positive and negative consequences for Xcc. On the one hand, it enables this bacterial pathogen to survive in the inhospitable environment of the leaf surface before infection and exploit the host plant's resources after infection, but on the other hand, it is a tell-tale sign of the pathogen's presence that triggers the plant to defend itself against infection.Fil: Piazza, Ainelén Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Zimaro, Tamara. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Garavaglia, Betiana Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Ficarra, Florencia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Thomas, Ludivine. King Abdullah University of Science and Technology; Arabia SauditaFil: Marondedze, Claudius. King Abdullah University of Science and Technology; Arabia SauditaFil: Feil, Regina. Max Planck Institute of Molecular Plant Physiology; AlemaniaFil: Lunn, John E.. Max Planck Institute of Molecular Plant Physiology; AlemaniaFil: Gehring, Chris. King Abdullah University of Science and Technology; Arabia SauditaFil: Ottado, Jorgelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Gottig Schor, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin
Ethnomedicine of the Kagera Region, north western Tanzania. Part 3: plants used in traditional medicine in Kikuku village, Muleba District.
BACKGROUND\ud
\ud
The Kagera region of north western Tanzania has a rich culture of traditional medicine use and practice. Traditional medicines are the mainstay of healthcare in this region and are known to support the management of many illnesses such as malaria, bacterial infections, epilepsy, gynecological problems and others. However, most of the plants being used have either not been documented or evaluated for safety and efficacy or both. This study, the sixth of an ongoing series, reports on the medicinal plants that are used at Kikuku village, Muleba District.\ud
\ud
METHODOLOGY\ud
\ud
A semi-structured questionnaire was used to collect information on the common/local names of the plants, parts of the plants used, diseases treated, methods of preparing the herbal remedies, dosage of the remedies administered, frequency and duration of treatment and toxicity of the medicines. A literature review was carried out for information on the ethnomedical uses of the reported plants.\ud
\ud
RESULTS\ud
\ud
A total of 49 plant species belonging to 47 genera and 24 plant families were documented. The family Euphorbiaceae and Asteraceae had the highest representation. The plants are used for the treatment of skin conditions (10 plants; 20%), bacterial infections and wounds (14 plants; 28.6%), malaria (14 plants; 28.6%), gastrointestinal disorders (11 plants; 22.4%), gynecological problems including infertility (8 plants; 16.3%), hypertension (5 plants; 10.2%), viral infections (7 plants; 14.3%), chest problems (5 plants; 10.2%), diabetes (3 plants; 6.1%), cancer (2 plants; 4.1%), inflammatory conditions (arthritis, rheumatism), HIV and AIDS, and hernia each treated by 1 plant (3 plants in total; 6.1%). Information obtained from the literature indicate that 25 (51.0%) of the therapeutic claims are supported by laboratory results or have similar claims of ethnomedical use from other countries.\ud
\ud
CONCLUSION\ud
\ud
Herbal remedies comprise an important and effective component of the healthcare system in Kikuku village with plants in the families Euphorbiaceae and Asteraceae comprising an important part of plants used in the indigenous healthcare management in the village. Malaria and bacterial infections dominate the list of diseases that are managed using traditional medicines
A simulation program for the timing of fungicides to control Sooty Blotch in organic apple growing. First results in 2003
A simulation program for infections by Sooty Blotch was developed based on
literature data and expert judgements. The value of the model as tool for timing
fungicide sprays to control Sooty Blotch was tested in 2003 in two randomized plot
trials, and four “on farm” trials where the treatments where made by the growers.
Disease pressure was relative low due to the warm and dry summer of 2003. Two to
five post infection treatments with lime sulfur or coconut soap aimed at severe
infection periods as indicated by the model provides 72 to 100 % control
Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis
The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors. Author Summary The plant-pathogenic fungus Mycosphaerella graminicola causes septoria tritici blotch, one of the most economically important diseases of wheat worldwide and a potential threat to global food production. Unlike most other plant pathogens, M. graminicola has a long latent period during which it seems able to evade host defenses, and its genome appears to be unstable with many chromosomes that can change size or be lost during sexual reproduction. To understand its unusual mechanism of pathogenicity and high genomic plasticity, the genome of M. graminicola was sequenced more completely than that of any other filamentous fungus. The finished sequence contains 21 chromosomes, eight of which were different from those in the core genome and appear to have originated by ancient horizontal transfer from an unknown donor. The dispensable chromosomes collectively comprise the dispensome and showed extreme plasticity during sexual reproduction. A surprising feature of the M. graminicola genome was a low number of genes for enzymes that break down plant cell walls; this may represent an evolutionary response to evade detection by plant defense mechanisms. The stealth pathogenicity of M. graminicola may involve degradation of proteins rather than carbohydrates and could have evolved from an endophytic ancestor
Protecting traditional ethno-botanical knowledge in South Africa through the intellectual property regime
Traditional knowledge has been used, and is increasingly being used, in a wide range of industries for the development of new products. Increasing awareness of the economic value of biological diversity has resulted in industries seeking to exploit traditional knowledge and biodiversity through opportunistic behaviour (biopiracy). This is also happening in South Africa, where numerous industries are developing new products. Recent advances in the field of biotechnology have created the need for greater intellectual property rights protection. The protection of traditional knowledge has however long been ignored as developed nations and large industries have sought to promote self-serving systems of protection. In this paper the example of an indigenous medicinal plant is used to analyse and describe the extent to which patent and trademark protection is able to protect traditional ethno-botanical knowledge in South Africa. The study therefore aims to contribute to an understanding of the value that traditional knowledge holds for the sustainable development and economic growth of communities, and how such knowledge can be protected.Research and Development/Tech Change/Emerging Technologies,
Intrinsic competition and its effects on the survival and development of three species of endoparasitoid wasps
In natural systems, pre-adult stages of some insect herbivores are known to be attacked by several species of parasitoids. Under certain conditions, hosts may be simultaneously parasitized by more than one parasitoid species (= multiparasitism), even though only one parasitoid species can successfully develop in an individual host. Here, we compared development, survival, and intrinsic competitive interactions among three species of solitary larval endoparasitoids, Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Microplitis demolitor Wilkinson, and Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), in singly parasitized and multiparasitized hosts. The three species differed in certain traits, such as in host usage strategies and adult body size. Campoletis sonorensis and M. demolitor survived equally well to eclosion in two host species that differed profoundly in size, Pseudoplusia includens (Walker) and the larger Heliothis virescens (Fabricius) (both Lepidoptera: Noctuidae). Egg-to-adult development time in C. sonorensis and M. demolitor also differed in the two hosts. Moreover, adult body mass in C. sonorensis (and not M. demolitor) was greater when developing in H. virescens larvae. We then monitored the outcome of competitive interactions in host larvae that were parasitized by one parasitoid species and subsequently multiparasitized by another species at various time intervals (0, 6, 24, and 48 h) after the initial parasitism. These experiments revealed that M. croceipes was generally a superior competitor to the other two species, whereas M. demolitor was the poorest competitor, with C. sonorensis being intermediate in this capacity. However, competition sometimes incurred fitness costs in M. croceipes and C. sonorensis, with longer development time and/or smaller adult mass observed in surviving wasps emerging from multiparasitized hosts. Our results suggest that rapid growth and large size relative to competitors of a similar age may be beneficial in aggressive intrinsic competitio
Small bowel and liver/small bowel transplantation in children.
A clinical trial of intestinal transplantation was initiated at the University of Pittsburgh in May 1990. Eleven children received either a combined liver/small bowel graft (n = 8) or an isolated small bowel graft (n = 3). Induction as well as maintenance immunosuppression was with FK-506 and steroids. Four patients were male, and seven were female; the age range was 6 months to 10.2 years. There were 3 deaths (all in recipients of the combined liver/small bowel graft), which were attributed to graft-versus-host disease (n = 1), posttransplant lymphoproliferative disease (n = 1), and biliary leak (n = 1). Transplantation of the intestine has evolved into a feasible operation, with an overall patient and graft survival rate of 73%. These survivors are free of total parenteral nutrition, and the majority are home. These encouraging results justify further clinical trials
- …
