31,402 research outputs found
Using small-angle X-ray scattering to investigate the compaction behaviour of a granulated clay
The compaction behaviour of a commercial granulated clay (magnesium aluminium smectite, gMgSm) was investigated using macroscopic pressure-density measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray microtomography (XμT) and small-angle X-ray scattering (SAXS). This material was studied as a potential compaction excipient for pharmaceutical tabletting, but also as a model system demonstrating the capabilities of SAXS for investigating compaction in other situations.
Bulk compaction measurements showed that the gMgSm was more difficult to compact than polymeric pharmaceutical excipients such as spheronised microcrystalline cellulose (sMCC), corresponding to harder granules. Moreover, in spite of using lubrication (magnesium stearate) on the tooling surfaces, rather high ejection forces were observed, which may cause problems during commercial tabletting, requiring further amelioration. Although the compacted gMgSm specimens were more porous, however, they still exhibited acceptable cohesive strengths, comparable to sMCC. Hence, there may be scope for using granular clay as one component of a tabletting formulation.
Following principles established in previous work, SAXS revealed information concerning the intragranular structure of the gMgSm and its response to compaction. The results showed that little compression of the intragranular morphology occurred below a relative density of 0 · 6, suggesting that granule rearrangements or fragmentation were the dominant mechanisms during this stage. By contrast, granule deformation became considerably more important at higher relative density, which also coincided with a significant increase in the cohesive strength of compacted specimens.
Spatially-resolved SAXS data was also used to investigate local variations in compaction behaviour within specimens of different shape. The results revealed the expected patterns of density variations within flat-faced cylindrical specimens. Significant variations in density, the magnitude of compressive strain and principal strain direction were also revealed in the vicinity of a debossed feature (a diametral notch) and within bi-convex specimens. The variations in compaction around the debossed notch, with a small region of high density below and low density along the flanks, appeared to be responsible for extensive cracking, which could also cause problems in commercial tabletting
Application of introduced nano-diamonds for the study of carbon condensation during detonation of high explosives
This paper describes the experimental studies of the formation of
nano-diamonds during detonation of TNT/RDX 50/50 mixture with small-angle x-ray
scattering (SAXS) method at a synchrotron radiation beam on VEPP-3 accelerator.
A new experimental method with introduction of nano-diamonds into the
explosive has been applied. Inclusion of the diamonds obtained after detonation
into the TNT and RDX explosives allows modelling of the case of instant
creation of nano-diamonds during detonation.Comment: Latex, 4 pages, 2 figures (proc. of SR-2008
Phase separation and self-assembly in vitrimers: hierarchical morphology of molten and semi-crystalline polyethylene/dioxaborolane maleimide systems
Vitrimers - a class of polymer networks which are covalently crosslinked and
insoluble like thermosets, but flow when heated like thermoplastics - contain
dynamic links and/or crosslinks that undergo an associative exchange reaction.
These dynamic crosslinks enable vitrimers to have interesting
mechanical/rheological behavior, self-healing, adhesive, and shape memory
properties. We demonstrate that vitrimers can self-assemble into complex meso-
and nanostructures when crosslinks and backbone monomers strongly interact.
Vitrimers featuring polyethylene (PE) as the backbone and dioxaborolane
maleimide as the crosslinkable moiety were studied in both the molten and
semi-crystalline states. We observed that PE vitrimers macroscopically phase
separated into dioxaborolane maleimide rich and poor regions, and characterized
the extent of phase separation by optical transmission measurements. This phase
separation can explain the relatively low insoluble fractions and overall
crystallinities of PE vitrimers. Using synchrotron-sourced small-angle X-ray
scattering (SAXS), we discovered that PE vitrimers and their linear precursors
micro-phase separated into hierarchical nanostructures. Fitting of the SAXS
patterns to a scattering model strongly suggests that the nanostructures -
which persist in both the melt and amorphous fraction of the semi-crystalline
state - may be described as dioxaborolane maleimide rich aggregates packed in a
mass fractal arrangement. These findings of hierarchical meso- and
nanostructures point out that incompatibility effects between network
components and resulting self-assembly must be considered for understanding
behavior and the rational design of vitrimer materials
Self-Assembly of Supramolecules Consisting of Octyl Gallate Hydrogen Bonded to Polyisoprene-block-poly(vinylpyridine) Diblock Copolymers
Synchrotron radiation was used to investigate the self-assembly in two comb-shaped supramolecules systems consisting of octyl gallate (OG), i.e., 1-octyl-3,4,5-trihydroxybenzoate, hydrogen bonded to the pyridine groups of polyisoprene-block-poly(vinylpyridine) diblock copolymers. In the case of the 1,2-polyisoprene-block-poly(4-vinylpyridine)(OG)x system, self-assembly was only observed for x ≥0.5, where x denotes the number of OG molecules per pyridine group. For x = 0.5, 0.75, 1.0, and 1.2 the system self-assembled in the form of hexagonally ordered cylinders of P4VP(OG) throughout the entire temperature range of 25-200 °C investigated. For the 1,4-polyisoprene-block-poly(2-vinylpyridine)(OG)x system, on the other hand, a considerably more complex phase behavior was found, including the formation of cubic, hexagonally ordered cylinders and lamellar morphologies. In this case several order-order transitions were observed as a function of temperature, including a lamellar to lamellar transition involving a collapse of the layer thickness. The absence of hydrogen bonding between the octyl gallate molecules and the pyridine groups at elevated temperatures is argued to be a key factor for many of the phenomena observed.
Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.
The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources
Small-angle x-ray-scattering study of phase separation and crystallization in the bulk amorphous Mg62Cu25Y10Li3 alloy
We report on a small-angle x-ray-scattering (SAXS) and differential scanning calorimetry study of phase separation and crystallization in rapidly quenched amorphous Mg62Cu25Y10Li3 alloy samples. Differential scanning calorimetry demonstrates the occurrence of crystallization and grain growth upon isothermal annealing of these samples at 135 °C. The SAXS studies show the presence of large inhomogeneities even in the rapidly quenched as-prepared Mg62Cu25Y10Li3 alloy that is attributed to phase separation in the undercooled liquid during the cooling process. After isothermal annealing at 135 °C for longer than 30 min the samples exhibit a strong SAXS intensity that monotonically increases with increasing annealing time. During heat treatment, crystallization and growth of a nanocrystalline bcc-Mg7Li3 phase occurs in the Y-poor and MgLi-rich domains. The initially rough boundaries of the nanocrystals become sharper with increasing annealing time. Anomalous small-angle x-ray-scattering investigations near the Cu K edge indicate that while Cu is distributed homogeneously in the as-prepared sample, a Cu composition gradient develops between the matrix and the bcc-Mg7Li3 nanocrystals in the annealed sample
Development of powder diffraction apparatus for small-angle X-ray scattering measurements
A novel type of X-ray collimation system attached to commercial powder diffractometers makes the structural characterization of nanomaterials possible in a wide size range from <0.1 to 100 nm by combination of the small- and wide-angle X-ray scattering techniques. There is no dead interval in the detection between the small- and wide-angle regimes. This device can be attached to any existing 'θ/θ' powder diffractometer, providing a multi-functional small- and wide-angle X-ray scattering/diffraction (SWAXS) apparatus. After proper alignment and adjustment, the device can be removed and re-attached at any time to switch between normal and SWAXS functions. Copyright © International Union of Crystallography 2013
- …