57,666 research outputs found
On a Vizing-type integer domination conjecture
Given a simple graph , a dominating set in is a set of vertices
such that every vertex not in has a neighbor in . Denote the domination
number, which is the size of any minimum dominating set of , by .
For any integer , a function
is called a \emph{-dominating function} if the sum of its function
values over any closed neighborhood is at least . The weight of a
-dominating function is the sum of its values over all the vertices. The
-domination number of , , is defined to be the
minimum weight taken over all -domination functions. Bre\v{s}ar,
Henning, and Klav\v{z}ar (On integer domination in graphs and Vizing-like
problems. \emph{Taiwanese J. Math.} {10(5)} (2006) pp. 1317--1328) asked
whether there exists an integer so that . In this note we use the Roman -domination number,
of Chellali, Haynes, Hedetniemi, and McRae, (Roman
-domination. \emph{Discrete Applied Mathematics} {204} (2016) pp.
22-28.) to prove that if is a claw-free graph and is an arbitrary
graph, then , which also implies the conjecture for all .Comment: 8 page
Further Results on the Total Roman Domination in Graphs
[EN] Let G be a graph without isolated vertices. A function f:V(G)-> {0,1,2} is a total Roman dominating function on G if every vertex v is an element of V(G) for which f(v)=0 is adjacent to at least one vertex u is an element of V(G) such that f(u)=2 , and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertices. The total Roman domination number of G, denoted gamma tR(G) , is the minimum weight omega (f)=Sigma v is an element of V(G)f(v) among all total Roman dominating functions f on G. In this article we obtain new tight lower and upper bounds for gamma tR(G) which improve the well-known bounds 2 gamma (G)<= gamma tR(G)<= 3 gamma (G) , where gamma (G) represents the classical domination number. In addition, we characterize the graphs that achieve equality in the previous lower bound and we give necessary conditions for the graphs which satisfy the equality in the upper bound above.Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A. (2020). Further Results on the Total Roman Domination in Graphs. Mathematics. 8(3):1-8. https://doi.org/10.3390/math8030349S1883Henning, M. A. (2009). A survey of selected recent results on total domination in graphs. Discrete Mathematics, 309(1), 32-63. doi:10.1016/j.disc.2007.12.044Henning, M. A., & Yeo, A. (2013). Total Domination in Graphs. Springer Monographs in Mathematics. doi:10.1007/978-1-4614-6525-6Henning, M. A., & Marcon, A. J. (2016). Semitotal Domination in Claw-Free Cubic Graphs. Annals of Combinatorics, 20(4), 799-813. doi:10.1007/s00026-016-0331-zHenning, M. . A., & Marcon, A. J. (2016). Vertices contained in all or in no minimum semitotal dominating set of a tree. Discussiones Mathematicae Graph Theory, 36(1), 71. doi:10.7151/dmgt.1844Henning, M. A., & Pandey, A. (2019). Algorithmic aspects of semitotal domination in graphs. Theoretical Computer Science, 766, 46-57. doi:10.1016/j.tcs.2018.09.019Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., & Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Mathematics, 278(1-3), 11-22. doi:10.1016/j.disc.2003.06.004Stewart, I. (1999). Defend the Roman Empire! Scientific American, 281(6), 136-138. doi:10.1038/scientificamerican1299-136Chambers, E. W., Kinnersley, B., Prince, N., & West, D. B. (2009). Extremal Problems for Roman Domination. SIAM Journal on Discrete Mathematics, 23(3), 1575-1586. doi:10.1137/070699688Favaron, O., Karami, H., Khoeilar, R., & Sheikholeslami, S. M. (2009). On the Roman domination number of a graph. Discrete Mathematics, 309(10), 3447-3451. doi:10.1016/j.disc.2008.09.043Liu, C.-H., & Chang, G. J. (2012). Upper bounds on Roman domination numbers of graphs. Discrete Mathematics, 312(7), 1386-1391. doi:10.1016/j.disc.2011.12.021González, Y., & Rodríguez-Velázquez, J. (2013). Roman domination in Cartesian product graphs and strong product graphs. Applicable Analysis and Discrete Mathematics, 7(2), 262-274. doi:10.2298/aadm130813017gLiu, C.-H., & Chang, G. J. (2012). Roman domination on strongly chordal graphs. Journal of Combinatorial Optimization, 26(3), 608-619. doi:10.1007/s10878-012-9482-yAhangar Abdollahzadeh, H., Henning, M., Samodivkin, V., & Yero, I. (2016). Total Roman domination in graphs. Applicable Analysis and Discrete Mathematics, 10(2), 501-517. doi:10.2298/aadm160802017aAmjadi, J., Sheikholeslami, S. M., & Soroudi, M. (2019). On the total Roman domination in trees. Discussiones Mathematicae Graph Theory, 39(2), 519. doi:10.7151/dmgt.2099Cabrera Martínez, A., Montejano, L. P., & Rodríguez-Velázquez, J. A. (2019). Total Weak Roman Domination in Graphs. Symmetry, 11(6), 831. doi:10.3390/sym1106083
Domination parameters with number 2: Interrelations and algorithmic consequences
In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin
Edge Roman domination on graphs
An edge Roman dominating function of a graph is a function satisfying the condition that every edge with
is adjacent to some edge with . The edge Roman
domination number of , denoted by , is the minimum weight
of an edge Roman dominating function of .
This paper disproves a conjecture of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi
and Sadeghian Sadeghabad stating that if is a graph of maximum degree
on vertices, then . While the counterexamples having the edge Roman domination numbers
, we prove that is an upper bound for connected graphs. Furthermore, we
provide an upper bound for the edge Roman domination number of -degenerate
graphs, which generalizes results of Akbari, Ehsani, Ghajar, Jalaly Khalilabadi
and Sadeghian Sadeghabad. We also prove a sharp upper bound for subcubic
graphs.
In addition, we prove that the edge Roman domination numbers of planar graphs
on vertices is at most , which confirms a conjecture of
Akbari and Qajar. We also show an upper bound for graphs of girth at least five
that is 2-cell embeddable in surfaces of small genus. Finally, we prove an
upper bound for graphs that do not contain as a subdivision, which
generalizes a result of Akbari and Qajar on outerplanar graphs
Domination parameters with number 2: interrelations and algorithmic consequences
In this paper, we study the most basic domination invariants in graphs, in
which number 2 is intrinsic part of their definitions. We classify them upon
three criteria, two of which give the following previously studied invariants:
the weak -domination number, , the -domination number,
, the -domination number, , the double
domination number, , the total -domination number,
, and the total double domination number, , where is a graph in which a corresponding invariant is well
defined. The third criterion yields rainbow versions of the mentioned six
parameters, one of which has already been well studied, and three other give
new interesting parameters. Together with a special, extensively studied Roman
domination, , and two classical parameters, the domination number,
, and the total domination number, , we consider 13
domination invariants in graphs . In the main result of the paper we present
sharp upper and lower bounds of each of the invariants in terms of every other
invariant, large majority of which are new results proven in this paper. As a
consequence of the main theorem we obtain some complexity results for the
studied invariants, in particular regarding the existence of approximation
algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure
Christian Rollinger, Amicitia sanctissime colenda. Freundschaft und soziale Netzwerke in der Späten Republik. Verlag Antike, Berlin 2014, 567 pages
Bounds on negative energy densities in static space-times
Certain exotic phenomena in general relativity, such as backward time travel,
appear to require the presence of matter with negative energy. While quantum
fields are a possible source of negative energy densities, there are lower
bounds - known as quantum inequalities - that constrain their duration and
magnitude. In this paper, we derive new quantum inequalities for scalar fields
in static space-times, as measured by static observers with a choice of
sampling function. Unlike those previously derived by Pfenning and Ford, our
results do not assume any specific sampling function. We then calculate these
bounds in static three- and four-dimensional Robertson-Walker universes, the de
Sitter universe, and the Schwarzschild black hole. In each case, the new
inequality is stronger than that of Pfenning and Ford for their particular
choice of sampling function.Comment: 22 pages, 5 figures; LaTeX; minor changes mad
Spontaneous Magnetization of the O(3) Ferromagnet at Low Temperatures
We investigate the low-temperature behavior of ferromagnets with a
spontaneously broken symmetry O(3) O(2). The analysis is performed within
the perspective of nonrelativistic effective Lagrangians, where the dynamics of
the system is formulated in terms of Goldstone bosons. Unlike in a
Lorentz-invariant framework (chiral perturbation theory), where loop graphs are
suppressed by two powers of momentum, loops involving ferromagnetic spin waves
are suppressed by three momentum powers. The leading coefficients of the
low-temperature expansion for the partition function are calculated up to order
. In agreement with Dyson's pioneering microscopic analysis of the
cubic ferromagnet, we find that, in the spontaneous magnetization, the
magnon-magnon interaction starts manifesting itself only at order . The
striking difference with respect to the low-temperature properties of the O(3)
antiferromagnet is discussed from a unified point of view, relying on the
effective Lagrangian technique.Comment: 23 pages, 4 figure
- …