14,143 research outputs found
Hexabenzo[4.4.4]propellane:  A Helical Molecular Platform for the Construction of Electroactive Materials
Helical hexabenzo[4.4.4]propellane (a relative of hexaphenylethane) and its derivatives are synthesized and their structures are established by X-ray crystallography. Isolation and X-ray crystallographic characterization of a robust trication-radical salt of hexamethoxypropellane derivative confirms that its framework is stable toward oxidative (aliphatic) C−C bond cleavage. It is also demonstrated that propellane can be easily brominated at the 4,4‘-positions of the biphenyl linkages for its usage as a molecular platform for the preparation of electroactive materials
Recommended from our members
A fixed-target platform for serial femtosecond crystallography in a hydrated environment.
For serial femtosecond crystallography at X-ray free-electron lasers, which entails collection of single-pulse diffraction patterns from a constantly refreshed supply of microcrystalline sample, delivery of the sample into the X-ray beam path while maintaining low background remains a technical challenge for some experiments, especially where this methodology is applied to relatively low-ordered samples or those difficult to purify and crystallize in large quantities. This work demonstrates a scheme to encapsulate biological samples using polymer thin films and graphene to maintain sample hydration in vacuum conditions. The encapsulated sample is delivered into the X-ray beam on fixed targets for rapid scanning using the Roadrunner fixed-target system towards a long-term goal of low-background measurements on weakly diffracting samples. As a proof of principle, we used microcrystals of the 24 kDa rapid encystment protein (REP24) to provide a benchmark for polymer/graphene sandwich performance. The REP24 microcrystal unit cell obtained from our sandwiched in-vacuum sample was consistent with previously established unit-cell parameters and with those measured by us without encapsulation in humidified helium, indicating that the platform is robust against evaporative losses. While significant scattering from water was observed because of the sample-deposition method, the polymer/graphene sandwich itself was shown to contribute minimally to background scattering
Recommended from our members
Archiving and disseminating integrative structure models.
Limitations in the applicability, accuracy, and precision of individual structure characterization methods can sometimes be overcome via an integrative modeling approach that relies on information from all available sources, including all available experimental data and prior models. The open-source Integrative Modeling Platform (IMP) is one piece of software that implements all computational aspects of integrative modeling. To maximize the impact of integrative structures, the coordinates should be made publicly available, as is already the case for structures based on X-ray crystallography, NMR spectroscopy, and electron microscopy. Moreover, the associated experimental data and modeling protocols should also be archived, such that the original results can easily be reproduced. Finally, it is essential that the integrative structures are validated as part of their publication and deposition. A number of research groups have already developed software to implement integrative modeling and have generated a number of structures, prompting the formation of an Integrative/Hybrid Methods Task Force. Following the recommendations of this task force, the existing PDBx/mmCIF data representation used for atomic PDB structures has been extended to address the requirements for archiving integrative structural models. This IHM-dictionary adds a flexible model representation, including coarse graining, models in multiple states and/or related by time or other order, and multiple input experimental information sources. A prototype archiving system called PDB-Dev ( https://pdb-dev.wwpdb.org ) has also been created to archive integrative structural models, together with a Python library to facilitate handling of integrative models in PDBx/mmCIF format
Simultaneous Ejection of Six Electrons at a Constant Potential by Hexakis(4-ferrocenylphenyl)benzene
A simple synthesis of a dendritic hexaferrocenyl electron donor (5) is described in which six ferrocene moieties are connected at the vertices of the propeller of the hexaphenylbenzene core. The molecular structure of 5 is confirmed by X-ray crystallography. An electrochemical analysis along with redox titrations (which are tantamount to coulometry) confirmed that it ejects six electrons at a single potential
Insightful classification of crystal structures using deep learning
Computational methods that automatically extract knowledge from data are
critical for enabling data-driven materials science. A reliable identification
of lattice symmetry is a crucial first step for materials characterization and
analytics. Current methods require a user-specified threshold, and are unable
to detect average symmetries for defective structures. Here, we propose a
machine-learning-based approach to automatically classify structures by crystal
symmetry. First, we represent crystals by calculating a diffraction image, then
construct a deep-learning neural-network model for classification. Our approach
is able to correctly classify a dataset comprising more than 100 000 simulated
crystal structures, including heavily defective ones. The internal operations
of the neural network are unraveled through attentive response maps,
demonstrating that it uses the same landmarks a materials scientist would use,
although never explicitly instructed to do so. Our study paves the way for
crystal-structure recognition of - possibly noisy and incomplete -
three-dimensional structural data in big-data materials science.Comment: Nature Communications, in press (2018
AFLOW-SYM: Platform for the complete, automatic and self-consistent symmetry analysis of crystals
Determination of the symmetry profile of structures is a persistent challenge
in materials science. Results often vary amongst standard packages, hindering
autonomous materials development by requiring continuous user attention and
educated guesses. Here, we present a robust procedure for evaluating the
complete suite of symmetry properties, featuring various representations for
the point-, factor-, space groups, site symmetries, and Wyckoff positions. The
protocol determines a system-specific mapping tolerance that yields symmetry
operations entirely commensurate with fundamental crystallographic principles.
The self consistent tolerance characterizes the effective spatial resolution of
the reported atomic positions. The approach is compared with the most used
programs and is successfully validated against the space group information
provided for over 54,000 entries in the Inorganic Crystal Structure Database.
Subsequently, a complete symmetry analysis is applied to all 1.7 million
entries of the AFLOW data repository. The AFLOW-SYM package has been
implemented in, and made available for, public use through the automated,
framework AFLOW.Comment: 24 pages, 6 figure
Recommended from our members
Comparing serial X-ray crystallography and microcrystal electron diffraction (MicroED) as methods for routine structure determination from small macromolecular crystals.
Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme
Structure calculation, refinement and validation using CcpNmr Analysis
CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral,hydrogen bonds and residual dipolar couplings (RDCs)],exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone
- …