238 research outputs found
Computation Bits Maximization for IRS-Aided Mobile-Edge Computing Networks With Phase Errors and Transceiver Hardware Impairments
Intelligent reflecting surface (IRS) is a hopeful technique to improve the computation offloading efficiency for mobile-edge computing (MEC) networks. However, the phase errors (PEs) of IRS and transceiver hardware impairments (THIs) will greatly degrade the performance of IRS-assisted MEC networks. To overcome this bottleneck, this paper first investigates the computation bits maximization problem for IRS-assisted MEC networks with PEs, where multiple Internet of Things (IoT) devices can offload their computation tasks to access points with the aid of IRS. By exploiting the block coordinate descent method, we design a multi-block optimization algorithm to tackle the non-convex problem. In particular, the optimal IRS phase shift, time allocation, transmit power and local computing frequencies of IoT devices are derived in closed-form expressions. Moreover, we further study the joint impact of PEs and THIs on the total computation bits of considered systems, where same methods in the scenario with PEs are used to obtain the optimal IRS phase shift and local computing frequencies of IoT devices, while an approximation algorithm and the variable substitution method are used to acquire the optimal transmit power and time allocation strategy. Finally, numerical results validate that our proposed methods can significantly outperform benchmark methods in terms of total computation bits
Survey on Near-Space Information Networks: Channel Modeling, Networking, and Transmission Perspectives
Near-space information networks (NSINs) composed of high-altitude platforms
(HAPs) and high- and low-altitude unmanned aerial vehicles (UAVs) are a new
regime for providing quick, robust, and cost-efficient sensing and
communication services. Precipitated by innovations and breakthroughs in
manufacturing, materials, communications, electronics, and control techniques,
NSINs have been envisioned as an essential component of the emerging
sixth-generation of mobile communication systems. This article reveals some
critical issues needing to be tackled in NSINs through conducting experiments
and discusses the latest advances in NSINs in the research areas of channel
modeling, networking, and transmission from a forward-looking, comparative, and
technical evolutionary perspective. In this article, we highlight the
characteristics of NSINs and present the promising use cases of NSINs. The
impact of airborne platforms' unstable movements on the phase delays of onboard
antenna arrays with diverse structures is mathematically analyzed. The recent
advances in HAP channel modeling are elaborated on, along with the significant
differences between HAP and UAV channel modeling. A comprehensive review of the
networking techniques of NSINs in network deployment, handoff management, and
network management aspects is provided. Besides, the promising techniques and
communication protocols of the physical (PHY) layer, medium access control
(MAC) layer, network layer, and transport layer of NSINs for achieving
efficient transmission over NSINs are reviewed, and we have conducted
experiments with practical NSINs to verify the performance of some techniques.
Finally, we outline some open issues and promising directions for NSINs
deserved for future study and discuss the corresponding challenges
A Comprehensive Survey Exploring the Multifaceted Interplay between Mobile Edge Computing and Vehicular Networks
Envisioning the Future Role of 3D Wireless Networks in Preventing and Managing Disasters and Emergency Situations
In an era marked by unprecedented climatic upheavals and evolving urban
landscapes, the role of advanced communication networks in disaster prevention
and management is becoming increasingly critical. This paper explores the
transformative potential of 3D wireless networks, an innovative amalgamation of
terrestrial, aerial, and satellite technologies, in enhancing disaster response
mechanisms. We delve into a myriad of use cases, ranging from large facility
evacuations to wildfire management, underscoring the versatility of these
networks in ensuring timely communication, real-time situational awareness, and
efficient resource allocation during crises. We also present an overview of
cutting-edge prototypes, highlighting the practical feasibility and operational
efficacy of 3D wireless networks in real-world scenarios. Simultaneously, we
acknowledge the challenges posed by aspects such as cybersecurity, cross-border
coordination, and physical layer technological hurdles, and propose future
directions for research and development in this domain
6G—Enabling the New Smart City: A Survey
Smart cities and 6G are technological areas that have the potential to transform the way we live and work in the years to come. Until this transformation comes into place, there is the need, underlined by research and market studies, for a critical reassessment of the entire wireless communication sector for smart cities, which should include the IoT infrastructure, economic factors that could improve their adoption rate, and strategies that enable smart city operations. Therefore, from a technical point of view, a series of stringent issues, such as interoperability, data privacy, security, the digital divide, and implementation issues have to be addressed. Notably, to concentrate the scrutiny on smart cities and the forthcoming influence of 6G, the groundwork laid by the current 5G, with its multifaceted role and inherent limitations within the domain of smart cities, is embraced as a foundational standpoint. This examination culminates in a panoramic exposition, extending beyond the mere delineation of the 6G standard toward the unveiling of the extensive gamut of potential applications that this emergent standard promises to introduce to the smart cities arena. This paper provides an update on the SC ecosystem around the novel paradigm of 6G, aggregating a series of enabling technologies accompanied by the descriptions of their roles and specific employment schemes
Massive MIMO
The use of a large number of antenna elements, known as Massive MIMO, is seen as a key enabling technology in the 5G and Beyond wireless ecosystem. The intelligent use of a multitude of antenna elements unleashes unprecedented flexibility and control on the physical channel of the wireless medium. Through Massive MIMO and other techniques, it is envisioned that the 5G and beyond wireless system will be able to support high throughput, high reliability (low bit-error-rate (BER)), high energy efficiency, low latency, and an internet-scale number of connected devices. Massive MIMO and related technologies will be deployed in the mid-band (sub 6 GHz) for coverage, all the way to mmWave bands to support large channel bandwidths. It is envisioned that Massive MIMO will be deployed in different environments: Frequency Division Duplex (FDD), (Time Division Duplex (TDD), indoor / outdoor, small cell, macro cell, and other heterogeneous networks (HetNet) configurations. Accurate and useful channel estimation remains a challenge in the efficient adoption of Massive MIMO techniques, and different performance-complexity tradeoffs may be supported by different Massive MIMO architectures such as digital, analog, and/or digital/analog hybrid. Carrier frequency offset (CFO), which arises due to the relative motion between the transmitter and receiver, is another important topic. Recently, maximum likelihood (ML) methods of CFO estimation have been proposed, that achieve very low root mean square (RMS) estimation errors, with a large scope for parallel processing and well suited for application with turbo codes. Massive MIMO opens up a whole new dimension of parameters where the wireless applications or other network layers may control or influence the operation and performance of the physical wireless channel. To fully reap the benefits of such flexibility, the latest advances in artificial intelligence (AI) and machine learning (ML) techniques will be leveraged to monitor and optimize the Massive MIMO sub-system. As such, a cross-layer open interface can facilitate exposing the programmability of Massive MIMO through techniques such as network slicing (NS) and network function virtualization (NFV). Finally, security needs to be integrated into the design of the system so the new functionality and performance of Massive MIMO can be utilized in a reliable manner.</p
Signal Processing and Learning for Next Generation Multiple Access in 6G
Wireless communication systems to date primarily rely on the orthogonality of
resources to facilitate the design and implementation, from user access to data
transmission. Emerging applications and scenarios in the sixth generation (6G)
wireless systems will require massive connectivity and transmission of a deluge
of data, which calls for more flexibility in the design concept that goes
beyond orthogonality. Furthermore, recent advances in signal processing and
learning have attracted considerable attention, as they provide promising
approaches to various complex and previously intractable problems of signal
processing in many fields. This article provides an overview of research
efforts to date in the field of signal processing and learning for
next-generation multiple access, with an emphasis on massive random access and
non-orthogonal multiple access. The promising interplay with new technologies
and the challenges in learning-based NGMA are discussed
Intra-nodal Caching Assisted UAV Based Data Acquisition from Wireless Mobile Ad-hoc Sensor Networks
A Systematic Survey on 5G and 6G Security Considerations, Challenges, Trends, and Research Areas
With the rapid rollout and growing adoption of 3GPP 5thGeneration (5G) cellular services, including in critical infrastructure sectors, it is important to review security mechanisms, risks, and potential vulnerabilities within this vital technology. Numerous security capabilities need to work together to ensure and maintain a sufficiently secure 5G environment that places user privacy and security at the forefront. Confidentiality, integrity, and availability are all pillars of a privacy and security framework that define major aspects of 5G operations. They are incorporated and considered in the design of the 5G standard by the 3rd Generation Partnership Project (3GPP) with the goal of providing a highly reliable network operation for all. Through a comprehensive review, we aim to analyze the ever-evolving landscape of 5G, including any potential attack vectors and proposed measures to mitigate or prevent these threats. This paper presents a comprehensive survey of the state-of-the-art research that has been conducted in recent years regarding 5G systems, focusing on the main components in a systematic approach: the Core Network (CN), Radio Access Network (RAN), and User Equipment (UE). Additionally, we investigate the utilization of 5G in time-dependent, ultra-confidential, and private communications built around a Zero Trust approach. In today’s world, where everything is more connected than ever, Zero Trust policies and architectures can be highly valuable in operations containing sensitive data. Realizing a Zero Trust Architecture entails continuous verification of all devices, users, and requests, regardless of their location within the network, and grants permission only to authorized entities. Finally, developments and proposed methods of new 5G and future 6G security approaches, such as Blockchain technology, post-quantum cryptography (PQC), and Artificial Intelligence (AI) schemes, are also discussed to understand better the full landscape of current and future research within this telecommunications domain
- …