11,496 research outputs found
Mapping our Universe in 3D with MITEoR
Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral
hydrogen has the potential to overtake the cosmic microwave background as our
most powerful cosmological probe, because it can map a much larger volume of
our Universe, shedding new light on the epoch of reionization, inflation, dark
matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder
low-frequency radio interferometer whose goal is to test technologies that
greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR
accomplishes this by using massive baseline redundancy both to enable automated
precision calibration and to cut the correlator cost scaling from N^2 to NlogN,
where N is the number of antennas. The success of MITEoR with its 64
dual-polarization elements bodes well for the more ambitious HERA project,
which would incorporate many identical or similar technologies using an order
of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium
on Phased Array Systems & Technolog
Calibration Challenges for Future Radio Telescopes
Instruments for radio astronomical observations have come a long way. While
the first telescopes were based on very large dishes and 2-antenna
interferometers, current instruments consist of dozens of steerable dishes,
whereas future instruments will be even larger distributed sensor arrays with a
hierarchy of phased array elements. For such arrays to provide meaningful
output (images), accurate calibration is of critical importance. Calibration
must solve for the unknown antenna gains and phases, as well as the unknown
atmospheric and ionospheric disturbances. Future telescopes will have a large
number of elements and a large field of view. In this case the parameters are
strongly direction dependent, resulting in a large number of unknown parameters
even if appropriately constrained physical or phenomenological descriptions are
used. This makes calibration a daunting parameter estimation task, that is
reviewed from a signal processing perspective in this article.Comment: 12 pages, 7 figures, 20 subfigures The title quoted in the meta-data
is the title after release / final editing
NIKA: A millimeter-wave kinetic inductance camera
Current generation millimeter wavelength detectors suffer from scaling limits
imposed by complex cryogenic readout electronics. To circumvent this it is
imperative to investigate technologies that intrinsically incorporate strong
multiplexing. One possible solution is the kinetic inductance detector (KID).
In order to assess the potential of this nascent technology, a prototype
instrument optimized for the 2 mm atmospheric window was constructed. Known as
the N\'eel IRAM KIDs Array (NIKA), it was recently tested at the Institute for
Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain.
The measurement resulted in the imaging of a number of sources, including
planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar
3C345, and galaxy M87 are presented. From these results, the optical NEP was
calculated to be around WHz. A factor of 10
improvement is expected to be readily feasible by improvements in the detector
materials and reduction of performance-degrading spurious radiation.Comment: Accepted for publication in Astronomy & Astrophysic
Reciprocity Calibration for Massive MIMO: Proposal, Modeling and Validation
This paper presents a mutual coupling based calibration method for
time-division-duplex massive MIMO systems, which enables downlink precoding
based on uplink channel estimates. The entire calibration procedure is carried
out solely at the base station (BS) side by sounding all BS antenna pairs. An
Expectation-Maximization (EM) algorithm is derived, which processes the
measured channels in order to estimate calibration coefficients. The EM
algorithm outperforms current state-of-the-art narrow-band calibration schemes
in a mean squared error (MSE) and sum-rate capacity sense. Like its
predecessors, the EM algorithm is general in the sense that it is not only
suitable to calibrate a co-located massive MIMO BS, but also very suitable for
calibrating multiple BSs in distributed MIMO systems.
The proposed method is validated with experimental evidence obtained from a
massive MIMO testbed. In addition, we address the estimated narrow-band
calibration coefficients as a stochastic process across frequency, and study
the subspace of this process based on measurement data. With the insights of
this study, we propose an estimator which exploits the structure of the process
in order to reduce the calibration error across frequency. A model for the
calibration error is also proposed based on the asymptotic properties of the
estimator, and is validated with measurement results.Comment: Submitted to IEEE Transactions on Wireless Communications,
21/Feb/201
Implementation of a Direct-Imaging and FX Correlator for the BEST-2 Array
A new digital backend has been developed for the BEST-2 array at
Radiotelescopi di Medicina, INAF-IRA, Italy which allows concurrent operation
of an FX correlator, and a direct-imaging correlator and beamformer. This
backend serves as a platform for testing some of the spatial Fourier transform
concepts which have been proposed for use in computing correlations on
regularly gridded arrays. While spatial Fourier transform-based beamformers
have been implemented previously, this is to our knowledge, the first time a
direct-imaging correlator has been deployed on a radio astronomy array.
Concurrent observations with the FX and direct-imaging correlator allows for
direct comparison between the two architectures. Additionally, we show the
potential of the direct-imaging correlator for time-domain astronomy, by
passing a subset of beams though a pulsar and transient detection pipeline.
These results provide a timely verification for spatial Fourier transform-based
instruments that are currently in commissioning. These instruments aim to
detect highly-redshifted hydrogen from the Epoch of Reionization and/or to
perform widefield surveys for time-domain studies of the radio sky. We
experimentally show the direct-imaging correlator architecture to be a viable
solution for correlation and beamforming.Comment: 12 pages, 17 figures, 2 tables, Accepted to MNRAS January 24, 2014,
includes appendix diagram
High Resolution Rapid Response observations of compact radio sources with the Ceduna Hobart Interferometer (CHI)
Context. Frequent, simultaneous observations across the electromagnetic
spectrum are essential to the study of a range of astrophysical phenomena
including Active Galactic Nuclei. A key tool of such studies is the ability to
observe an object when it flares i.e. exhibits a rapid and significant increase
in its flux density.
Aims. We describe the specific observational procedures and the calibration
techniques that have been developed and tested to create a single baseline
radio interferometer that can rapidly observe a flaring object. This is the
only facility that is dedicated to rapid high resolution radio observations of
an object south of -30 degrees declination. An immediate application is to
provide rapid contemporaneous radio coverage of AGN flaring at {\gamma}-ray
frequencies detected by the Fermi Gamma-ray Space Telescope.
Methods. A single baseline interferometer was formed with radio telescopes in
Hobart, Tasmania and Ceduna, South Australia. A software correlator was set up
at the University of Tasmania to correlate these data.
Results. Measurements of the flux densities of flaring objects can be made
using our observing strategy within half an hour of a triggering event. These
observations can be calibrated with amplitude errors better than 15%. Lower
limits to the brightness temperatures of the sources can also be calculated
using CHI.Comment: 6 pages, 6 figures, 1 table. Accepted for publication in A&
Antenna Design and Implementation for the Future Space Ultra-Long Wavelength Radio Telescope
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10
m (frequencies below 30 MHz), remains the last virtually unexplored window of
the celestial electromagnetic spectrum. The strength of the science case for
extending radio astronomy into the ULW window is growing. However, the
opaqueness of the Earth's ionosphere makes ULW observations by ground-based
facilities practically impossible. Furthermore, the ULW spectrum is full of
anthropogenic radio frequency interference (RFI). The only radical solution for
both problems is in placing an ULW astronomy facility in space. We present a
concept of a key element of a space-borne ULW array facility, an antenna that
addresses radio astronomical specifications. A tripole-type antenna and
amplifier are analysed as a solution for ULW implementation. A receiver system
with a low power dissipation is discussed as well. The active antenna is
optimized to operate at the noise level defined by the celestial emission in
the frequency band 1 - 30 MHz. Field experiments with a prototype tripole
antenna enabled estimates of the system noise temperature. They indicated that
the proposed concept meets the requirements of a space-borne ULW array
facility.Comment: Submitted to Experimental Astronomy, 23 pages, 17 figure
A Novel Design Approach to X-Band Minkowski Reflectarray Antennas using the Full-Wave EM Simulation-based Complete Neural Model with a Hybrid GA-NM Algorithm
In this work, a novel multi-objective design optimization procedure is presented for the Minkowski Reflectarray RAs using a complete 3-D CST Microwave Studio MWS-based Multilayer Perceptron Neural Network MLP NN model including the substrate constant εr with a hybrid Genetic GA and Nelder-Mead NM algorithm. The MLP NN model provides an accurate and fast model and establishes the reflection phase of a unit Minkowski RA element as a continuous function within the input domain including the substrate 1 ≤ εr ≤ 6; 0.5mm ≤ h ≤ 3mm in the frequency between 8GHz ≤ f ≤ 12GHz. This design procedure enables a designer to obtain not only the most optimum Minkowski RA design all throughout the X- band, at the same time the optimum Minkowski RAs on the selected substrates. Moreover a design of a fully optimized X-band 15×15 Minkowski RA antenna is given as a worked example with together the tolerance analysis and its performance is also compared with those of the optimized RAs on the selected traditional substrates. Finally it may be concluded that the presented robust and systematic multi-objective design procedure is conveniently applied to the Microstrip Reflectarray RAs constructed from the advanced patches
- …