46,962 research outputs found
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Towards an Architecture for Semiautonomous Robot Telecontrol Systems.
The design and development of a computational system to support robot–operator collaboration is a challenging task, not only because of the overall system complexity, but furthermore because of the involvement of different technical and scientific disciplines, namely, Software Engineering, Psychology and Artificial Intelligence, among others. In our opinion the approach generally used to face this type of project is based on system architectures inherited from the development of autonomous robots and therefore fails to incorporate explicitly the role of the operator, i.e. these architectures lack a view that help the operator to see him/herself as an integral part of the system. The goal of this paper is to provide a human-centered paradigm that makes it possible to create this kind of view of the system architecture. This architectural description includes the definition of the role of operator and autonomous behaviour of the robot, it identifies the shared knowledge, and it helps the operator to see the robot as an intentional being as himself/herself
- …