27,776 research outputs found
Some results on embeddings of algebras, after de Bruijn and McKenzie
In 1957, N. G. de Bruijn showed that the symmetric group Sym(\Omega) on an
infinite set \Omega contains a free subgroup on 2^{card(\Omega)} generators,
and proved a more general statement, a sample consequence of which is that for
any group A of cardinality \leq card(\Omega), Sym(\Omega) contains a coproduct
of 2^{card(\Omega)} copies of A, not only in the variety of all groups, but in
any variety of groups to which A belongs. His key lemma is here generalized to
an arbitrary variety of algebras \bf{V}, and formulated as a statement about
functors Set --> \bf{V}. From this one easily obtains analogs of the results
stated above with "group" and Sym(\Omega) replaced by "monoid" and the monoid
Self(\Omega) of endomaps of \Omega, by "associative K-algebra" and the
K-algebra End_K(V) of endomorphisms of a K-vector-space V with basis \Omega,
and by "lattice" and the lattice Equiv(\Omega) of equivalence relations on
\Omega. It is also shown, extending another result from de Bruijn's 1957 paper,
that each of Sym(\Omega), Self(\Omega) and End_K (V) contains a coproduct of
2^{card(\Omega)} copies of itself.
That paper also gave an example of a group of cardinality 2^{card(\Omega)}
that was {\em not} embeddable in Sym(\Omega), and R. McKenzie subsequently
established a large class of such examples. Those results are shown to be
instances of a general property of the lattice of solution sets in Sym(\Omega)
of sets of equations with constants in Sym(\Omega). Again, similar results --
this time of varying strengths -- are obtained for Self(\Omega), End_K (V), and
Equiv(\Omega), and also for the monoid \Rel of binary relations on \Omega.
Many open questions and areas for further investigation are noted.Comment: 37 pages. Copy at http://math.berkeley.edu/~gbergman/papers is likely
to be updated more often than arXiv copy Revised version includes answers to
some questions left open in first version, references to results of Wehrung
answering some other questions, and some additional new result
Boundary quotients and ideals of Toeplitz C*-algebras of Artin groups
We study the quotients of the Toeplitz C*-algebra of a quasi-lattice ordered
group (G,P), which we view as crossed products by a partial actions of G on
closed invariant subsets of a totally disconnected compact Hausdorff space, the
Nica spectrum of (G,P). Our original motivation and our main examples are drawn
from right-angled Artin groups, but many of our results are valid for more
general quasi-lattice ordered groups. We show that the Nica spectrum has a
unique minimal closed invariant subset, which we call the boundary spectrum,
and we define the boundary quotient to be the crossed product of the
corresponding restricted partial action. The main technical tools used are the
results of Exel, Laca, and Quigg on simplicity and ideal structure of partial
crossed products, which depend on amenability and topological freeness of the
partial action and its restriction to closed invariant subsets. When there
exists a generalised length function, or controlled map, defined on G and
taking values in an amenable group, we prove that the partial action is
amenable on arbitrary closed invariant subsets. Our main results are obtained
for right-angled Artin groups with trivial centre, that is, those with no
cyclic direct factor; they include a presentation of the boundary quotient in
terms of generators and relations that generalises Cuntz's presentation of O_n,
a proof that the boundary quotient is purely infinite and simple, and a
parametrisation of the ideals of the Toeplitz C*-algebra in terms of subsets of
the standard generators of the Artin group.Comment: 26 page
Automated construction of -invariant matrix-product operators from graph representations
We present an algorithmic construction scheme for matrix-product-operator
(MPO) representations of arbitrary -invariant operators whenever there is
an expression of the local structure in terms of a finite-states machine (FSM).
Given a set of local operators as building blocks, the method automatizes two
major steps when constructing a -invariant MPO representation: (i) the
bookkeeping of auxiliary bond-index shifts arising from the application of
operators changing the local quantum numbers and (ii) the appearance of phase
factors due to particular commutation rules. The automatization is achieved by
post-processing the operator strings generated by the FSM. Consequently, MPO
representations of various types of -invariant operators can be
constructed generically in MPS algorithms reducing the necessity of expensive
MPO arithmetics. This is demonstrated by generating arbitrary products of
operators in terms of FSM, from which we obtain exact MPO representations for
the variance of the Hamiltonian of a Heisenberg chain.Comment: resubmitted version with minor correction
- …