193,957 research outputs found
Oral Administration of Peppermint in Wistar Albino Rats: Memory Boosting and Regaining
The studies on peppermint aroma fluence on cognition are numerous. However the knowledge about oral consumption of peppermint and cognition was inadequate. Hence the present study was undertaken to find out the effect of oral administration of peppermint spices in memory boosting and memory regaining on adult wistar rats. Here we investigate the influence of oral intake of peppermint on behavioral task performance by using T-maze and radial arm maze and physiological measures relative to a milk control group. We have observed significant memory boosting and memory regaining effects of peppermint when administered orally. This effect may be due to improvement of the blood flow to the brain and increasing the concentration power. Hence we recommend further research in this area by investigating compound metabolism to optimize quantification of memory performance following peppermint ingestion
mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data
<p>Motivation: Stable isotope-labelling experiments have recently gained increasing popularity in metabolomics studies, providing unique insights into the dynamics of metabolic fluxes, beyond the steady-state information gathered by routine mass spectrometry. However, most liquid chromatography–mass spectrometry data analysis software lacks features that enable automated annotation and relative quantification of labelled metabolite peaks. Here, we describe mzMatch–ISO, a new extension to the metabolomics analysis pipeline mzMatch.R.</p>
<p>Results: Targeted and untargeted isotope profiling using mzMatch–ISO provides a convenient visual summary of the quality and quantity of labelling for every metabolite through four types of diagnostic plots that show (i) the chromatograms of the isotope peaks of each compound in each sample group; (ii) the ratio of mono-isotopic and labelled peaks indicating the fraction of labelling; (iii) the average peak area of mono-isotopic and labelled peaks in each sample group; and (iv) the trend in the relative amount of labelling in a predetermined isotopomer. To aid further statistical analyses, the values used for generating these plots are also provided as a tab-delimited file. We demonstrate the power and versatility of mzMatch–ISO by analysing a 13C-labelled metabolome dataset from trypanosomal parasites.</p>
mzMatch-ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data
<p>Motivation: Stable isotope-labelling experiments have recently gained increasing popularity in metabolomics studies, providing unique insights into the dynamics of metabolic fluxes, beyond the steady-state information gathered by routine mass spectrometry. However, most liquid chromatography–mass spectrometry data analysis software lacks features that enable automated annotation and relative quantification of labelled metabolite peaks. Here, we describe mzMatch–ISO, a new extension to the metabolomics analysis pipeline mzMatch.R.</p>
<p>Results: Targeted and untargeted isotope profiling using mzMatch–ISO provides a convenient visual summary of the quality and quantity of labelling for every metabolite through four types of diagnostic plots that show (i) the chromatograms of the isotope peaks of each compound in each sample group; (ii) the ratio of mono-isotopic and labelled peaks indicating the fraction of labelling; (iii) the average peak area of mono-isotopic and labelled peaks in each sample group; and (iv) the trend in the relative amount of labelling in a predetermined isotopomer. To aid further statistical analyses, the values used for generating these plots are also provided as a tab-delimited file. We demonstrate the power and versatility of mzMatch–ISO by analysing a 13C-labelled metabolome dataset from trypanosomal parasites.</p>
Reversible Keap1 inhibitors are preferential pharmacological tools to modulate cellular mitophagy
Mitophagy orchestrates the autophagic degradation of dysfunctional mitochondria preventing their pathological accumulation and contributing to cellular homeostasis. We previously identified a novel chemical tool (hereafter referred to as PMI), which drives mitochondria into autophagy without collapsing their membrane potential (ΔΨm). PMI is an inhibitor of the protein-protein interaction (PPI) between the transcription factor Nrf2 and its negative regulator, Keap1 and is able to up-regulate the expression of autophagy-associated proteins, including p62/SQSTM1. Here we show that PMI promotes mitochondrial respiration, leading to a superoxide-dependent activation of mitophagy. Structurally distinct Keap1-Nrf2 PPI inhibitors promote mitochondrial turnover, while covalent Keap1 modifiers, including sulforaphane (SFN) and dimethyl fumarate (DMF), are unable to induce a similar response. Additionally, we demonstrate that SFN reverses the effects of PMI in co-treated cells by reducing the accumulation of p62 in mitochondria and subsequently limiting their autophagic degradation. This study highlights the unique features of Keap1-Nrf2 PPI inhibitors as inducers of mitophagy and their potential as pharmacological agents for the treatment of pathological conditions characterized by impaired mitochondrial quality control
Development and application of an UHPLC-MS/MS method for the simultaneous determination of 17 steroidal hormones in equine serum
A new, fast and simple analytical method that is able to identify and quantify simultaneously 17 steroid hormones and metabolites (Pregnenolone, 17-OH-Pregnenolone, Progesterone, 17-OH Progesterone, Androsterone, Androstenedione, DHEA, DHEAS, Testosterone, Cortisol, Corticosterone, Aldosterone, 11-Deoxycortisol, 11-Deoxycorticosterone, Dihydrotestosterone, Estrone, Estradiol) has been developed in equine serum using the UHPLC-MS/MS technique. 400 μL of sample were deproteinized with 1000 µl of acetonitrile, evaporated, restored with 50 µl of a solution of 25% methanol and injected in UHPLC-MS/MS triple quadrupole. The recovery percentage obtained by spiking the matrix at two different concentrations with a standard mixture of steroid hormones was in all cases higher than 85.60 % and with the percentage of coefficient of variation (CV) lower than 8.37%. The range of the correlation coefficients of the calibration curves of the analyzed compounds was 0.9922–0.9986, and the limits of detection (LODs) and limits of quantification (LOQs) were in the range of 0.002–2 ng ml-1 and 0.0055-5.5 ng ml-1, respectively. The detected LOQ for testosterone (i.e. 50 pg ml-1) is two-fold lower with respect to its threshold admitted in geldings plasma (100 pg ml-1 free testosterone). The high sensitivity and the quantitative aspect of the method permitted to detect most of steroids in equine serum. Once validated, the method was used to quantify 17 steroid hormones in mare, stallion and gelding serum samples. The main steroids detected were corticosterone (range 37.25-51.26 ng ml-1) and cortisol (range 32.57-52.24 ng ml-1), followed by 17-OH-pregnenolone, dihydrotestosterone and pregnenolone
Recommended from our members
Promoting tau secretion and propagation by hyperactive p300/CBP via autophagy-lysosomal pathway in tauopathy.
BackgroundThe trans-neuronal propagation of tau has been implicated in the progression of tau-mediated neurodegeneration. There is critical knowledge gap in understanding how tau is released and transmitted, and how that is dysregulated in diseases. Previously, we reported that lysine acetyltransferase p300/CBP acetylates tau and regulates its degradation and toxicity. However, whether p300/CBP is involved in regulation of tau secretion and propagation is unknown.MethodWe investigated the relationship between p300/CBP activity, the autophagy-lysosomal pathway (ALP) and tau secretion in mouse models of tauopathy and in cultured rodent and human neurons. Through a high-through-put compound screen, we identified a new p300 inhibitor that promotes autophagic flux and reduces tau secretion. Using fibril-induced tau spreading models in vitro and in vivo, we examined how p300/CBP regulates tau propagation.ResultsIncreased p300/CBP activity was associated with aberrant accumulation of ALP markers in a tau transgenic mouse model. p300/CBP hyperactivation blocked autophagic flux and increased tau secretion in neurons. Conversely, inhibiting p300/CBP promoted autophagic flux, reduced tau secretion, and reduced tau propagation in fibril-induced tau spreading models in vitro and in vivo.ConclusionsWe report that p300/CBP, a lysine acetyltransferase aberrantly activated in tauopathies, causes impairment in ALP, leading to excess tau secretion. This effect, together with increased intracellular tau accumulation, contributes to enhanced spreading of tau. Our findings suggest that inhibition of p300/CBP as a novel approach to correct ALP dysfunction and block disease progression in tauopathy
A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling.
Mechanisms that integrate the metabolic state of a cell with regulatory pathways are necessary to maintain cellular homeostasis. Endogenous, intrinsically reactive metabolites can form functional, covalent modifications on proteins without the aid of enzymes1,2, and regulate cellular functions such as metabolism3-5 and transcription6. An important 'sensor' protein that captures specific metabolic information and transforms it into an appropriate response is KEAP1, which contains reactive cysteine residues that collectively act as an electrophile sensor tuned to respond to reactive species resulting from endogenous and xenobiotic molecules. Covalent modification of KEAP1 results in reduced ubiquitination and the accumulation of NRF27,8, which then initiates the transcription of cytoprotective genes at antioxidant-response element loci. Here we identify a small-molecule inhibitor of the glycolytic enzyme PGK1, and reveal a direct link between glycolysis and NRF2 signalling. Inhibition of PGK1 results in accumulation of the reactive metabolite methylglyoxal, which selectively modifies KEAP1 to form a methylimidazole crosslink between proximal cysteine and arginine residues (MICA). This posttranslational modification results in the dimerization of KEAP1, the accumulation of NRF2 and activation of the NRF2 transcriptional program. These results demonstrate the existence of direct inter-pathway communication between glycolysis and the KEAP1-NRF2 transcriptional axis, provide insight into the metabolic regulation of the cellular stress response, and suggest a therapeutic strategy for controlling the cytoprotective antioxidant response in several human diseases
Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters
Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled watersPostprint (published version
- …