38,493 research outputs found
Regioselective Reactions of Highly Substituted Arynes
The fully regioselective reactivity of four new highly substituted silyl aryl triflate aryne precursors in aryne acyl-alkylation, acyl-alkylation/condensation, and heteroannulation reactions is reported. The application of these more complex arynes provides access to diverse natural product scaffolds and obviates late-stage functionalization of aromatic rings
Iron-Catalyzed, Highly Regioselective Synthesis of alpha-Aryl Carboxylic Acids from Styrene Derivatives and CO2
Chemoenzymatic elaboration of monosaccharides using engineered cytochrome P450_(BM3) demethylases
Polysaccharides comprise an extremely important class of biopolymers
that play critical roles in a wide range of biological processes,
but the synthesis of these compounds is challenging because of
their complex structures. We have developed a chemoenzymatic
method for regioselective deprotection of monosaccharide substrates
using engineered Bacillus megaterium cytochrome P450
(P450_(BM3)) demethylases that provides a highly efficient means
to access valuable intermediates, which can be converted to a
wide range of substituted monosaccharides and polysaccharides.
Demethylases displaying high levels of regioselectivity toward a
number of protected monosaccharides were identified using a
combination of protein and substrate engineering, suggesting that
this approach ultimately could be used in the synthesis of a wide
range of substituted mono- and polysaccharides for studies in
chemistry, biology, and medicine
Synthesis of partially O-acetylated N-acetylneuraminic acid using regioselective silyl exchange technology.
Postglycosylation acetylation of sialic acid imparts unique roles to sialoglycoconjugates in mammalian immune response making structural and functional understanding of these analogues important. Five partially O-acetylated Neu5Ac analogues have been synthesized. Reaction of per-O-silylated Neu5Ac ester with AcOH and Ac2O in pyridine promotes regioselective silyl ether/acetate exchange in the following order: C4 (2°) > C9 (1°) > C8 (2°) > C2 (anomeric). Subsequent hydrogenolysis affords the corresponding sialic acid analogues as useful chemical biology tools
Bile acids: Lipase-catalyzed synthesis of new hyodeoxycholic acid derivatives
In this work we present an efficient, environmentally friendly approach to the synthesis of a series of hyodeoxycholic acid derivatives applying Biocatalysis. Fifteen acetyl and ester derivatives, twelve of them new, were obtained through an enzymatic strategy in a fully regioselective way and in very good to excellent yield. In order to find the optimal reaction conditions, the influence of several parameters such as enzyme source, alcohol or acylating agent:substrate ratio, enzyme:substrate ratio, temperature and reaction solvent was considered. The excellent results obtained made this procedure very efficient, particularly considering the low amount of enzyme required. In addition, this methodology uses mild reaction conditions and has reduced environmental impact, making biocatalysis a suitable way to obtaining these bile acids derivatives.Fil: Chanquia, Santiago Nahuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Ripani, Erika Aldana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Baldessari, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Garcia Liñares, Guadalupe Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentin
Chain-Selective and Regioselective Ethylene and Styrene Dimerization Reactions Catalyzed by a Well-Defined Cationic Ruthenium-Hydride Complex: New Insights on the Styrene Dimerization Mechanism
The cationic ruthenium hydride complex [(η6-C6H6)(PCy3)(CO)RuH]+BF4− was found to be a highly regioselective catalyst for the ethylene dimerization reaction to give 2-butene products (TOF = 1910 h−1, \u3e95% selectivity for 2-butenes). The dimerization of styrene exclusively produced the head-to-tail dimer (E)-PhCH(CH3)CH═CHPh at an initial turnover rate of 2300 h−1. A rapid and extensive H/D exchange between the vinyl hydrogens of styrene-d8 and 4-methoxystyrene was observed within 10 min without forming the dimer products at room temperature. The inverse deuterium isotope effect of kH/kD = 0.77 ± 0.10 was measured from the first-order plots on the dimerization reaction of styrene and styrene-d8 in chlorobenzene at 70 °C. The pronounced carbon isotope effect on both vinyl carbons of styrene as measured by using Singleton’s method (13C(recovered)/13C(virgin) at C1 = 1.096 and C2 = 1.042) indicates that the C−C bond formation is the rate-limiting step for the dimerization reaction. The Eyring plot of the dimerization of styrene in the temperature range of 50−90 °C led to ΔH⧧ = 3.3(6) kcal/mol and ΔS⧧ = −35.5(7) eu. An electrophilic addition mechanism has been proposed for the dimerization of styrene
Scope and Mechanistic Study of the Ruthenium-Catalyzed \u3cem\u3eortho\u3c/em\u3e-C−H Bond Activation and Cyclization Reactions of Arylamines with Terminal Alkynes
The cationic ruthenium hydride complex [(PCy3)2(CO)(CH3CN)2RuH]+BF4- was found to be a highly effective catalyst for the C−H bond activation reaction of arylamines and terminal alkynes. The regioselective catalytic synthesis of substituted quinoline and quinoxaline derivatives was achieved from the ortho-C−H bond activation reaction of arylamines and terminal alkynes by using the catalyst Ru3(CO)12/HBF4·OEt2. The normal isotope effect (kCH/kCD = 2.5) was observed for the reaction of C6H5NH2 and C6D5NH2 with propyne. A highly negative Hammett value (ρ = −4.4) was obtained from the correlation of the relative rates from a series of meta-substituted anilines, m-XC6H4NH2, with σp in the presence of Ru3(CO)12/HBF4·OEt2 (3 mol % Ru, 1:3 molar ratio). The deuterium labeling studies from the reactions of both indoline and acyclic arylamines with DC⋮CPh showed that the alkyne C−H bond activation step is reversible. The crossover experiment from the reaction of 1-(2-amino-1-phenyl)pyrrole with DC⋮CPh and HC⋮CC6H4-p-OMe led to preferential deuterium incorporation to the phenyl-substituted quinoline product. A mechanism involving rate-determining ortho-C−H bond activation and intramolecular C−N bond formation steps via an unsaturated cationic ruthenium acetylide complex has been proposed
Glycerol as a cheap, safe and sustainable solvent for the catalytic and regioselective β,β-diarylation of acrylates over palladium nanoparticles
Herein we show that glycerol can be considered as a promising cheap and green solvent for the regioselective β,β-diarylation of alkenes. Whereas this reaction is generally catalyzed under an inert atmosphere by expensive phosphine or carbene-palladium complexes, we show here that the diarylation of alkenes can be conveniently achieved in glycerol in the presence of air-stable palladium nanoparticles. These palladium nanoparticles were stabilized over a sugar-based surfactant derived from biomass. By an adjustment of the reaction temperature, we were able to control the mono- and diarylation step of alkenes, thus offering a convenient route to unsymmetrical diarylated alkenes. At the end of the reaction, the diarylated alkenes were cleanly and selectively extracted from the glycerol-palladium catalytic phase using supercritical carbon dioxide, thus affording a convenient purification work-up. Within the framework of green chemistry, this work combines (i) catalysis in a cheap, safe and sustainable medium, (ii) easily made and air-stable palladium nanoparticles as the catalyst, and (iii) a clean and selective extraction of the reaction products with supercritical carbon dioxide
- …