23,291 research outputs found

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Parameterizing the semantics of fuzzy attribute implications by systems of isotone Galois connections

    Full text link
    We study the semantics of fuzzy if-then rules called fuzzy attribute implications parameterized by systems of isotone Galois connections. The rules express dependencies between fuzzy attributes in object-attribute incidence data. The proposed parameterizations are general and include as special cases the parameterizations by linguistic hedges used in earlier approaches. We formalize the general parameterizations, propose bivalent and graded notions of semantic entailment of fuzzy attribute implications, show their characterization in terms of least models and complete axiomatization, and provide characterization of bases of fuzzy attribute implications derived from data

    Exploring Language Mechanisms: The Mass-Count Distinction and The Potts Neural Network

    Get PDF
    The aim of this thesis is to explore language mechanisms in two aspects. First, the statistical properties of syntax and semantics, and second, the neural mechanisms which could be of possible use in trying to understand how the brain learns those particular statistical properties. In the first part of the thesis (part A) we focus our attention on a detailed statistical study of the syntax and semantics of the mass-count distinction in nouns. We collected a database of how 1,434 nouns are used with respect to the mass-count distinction in six languages; additional informants characterised the semantics of the underlying concepts. Results indicate only weak correlations between semantics and syntactic usage. The classification rather than being bimodal, is a graded distribution and it is similar across languages, but syntactic classes do not map onto each other, nor do they reflect, beyond weak correlations, semantic attributes of the concepts. These findings are in line with the hypothesis that much of the mass/count syntax emerges from language- and even speaker-specific grammaticalisation. Further, in chapter 3 we test the ability of a simple neural network to learn the syntactic and semantic relations of nouns, in the hope that it may throw some light on the challenges in modelling the acquisition of the mass-count syntax. It is shown that even though a simple self-organising neural network is insufficient to learn a mapping implementing a syntactic- semantic link, it does however show that the network was able to extract the concept of 'count', and to some extent that of \u2018mass\u2019 as well, without any explicit definition, from both the syntactic and from the semantic data. The second part of the thesis (part B) is dedicated to studying the properties of the Potts neural network. The Potts neural network with its adaptive dynamics represents a simplified model of cortical mechanisms. Among other cognitive phenomena, it intends to model language production by utilising the latching behaviour seen in the network. We expect that a model of language processing should robustly handle various syntactic- semantic correlations amongst the words of a language. With this aim, we test the effect on storage capacity of the Potts network when the memories stored in it share non trivial correlations. Increase in interference between stored memories due to correlations is studied along with modifications in learning rules to reduce the interference. We find that when strongly correlated memories are incorporated in the storage capacity definition, the network is able to regain its storage capacity for low sparsity. Strong correlations also affect the latching behaviour of the Potts network with the network unable to latch from one memory to another. However latching is shown to be restored by modifying the learning rule. Lastly, we look at another feature of the Potts neural network, the indication that it may exhibit spin-glass characteristics. The network is consistently shown to exhibit multiple stable degenerate energy states other than that of pure memories. This is tested for different degrees of correlations in patterns, low and high connectivity, and different levels of global and local noise. We state some of the implications that the spin-glass nature of the Potts neural network may have on language processing

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    Using genetic algorithms to find cellular automata rule sets capable of generating maze-like game level layouts

    Get PDF
    The video game industry has grown substantially over the last decade and the quality of video games has also been advancing rapidly. In recent years, video games have been advancing to a point that the increased time required to manually create their content is making this process too costly. This has made procedural content generation a desirable option for game developers due to its speed of generating content, and the variety of content that a single PCG method can produced. The main purpose of this dissertation is to detail a new approach to procedurally generate video game level layouts, and to aid in further research in the area of procedural video game content generation. The new PCG approach investigated and developed in this study combined a genetic algorithm with cellular automata and a maze generation technique into a method for generating game level layouts with desired maze-like properties. The GA in this approach was utilized to evolve CA rules that, when applied to a maze configuration, would produce layouts with desired properties. This research discovered that CA rules could be evolved to generate level layouts with desired properties, and that there were a number of parameters which could affect the layouts these rules produced. These parameters include the number of cell states used in the CA, as well as the CA’s neighbourhood size and the number of times the CA rules were applied to their maze configurations. This research also discovered that the one factor that had the largest impact on the visual aspect of the generated layouts was the chosen chromosome representation

    TLAD 2010 Proceedings:8th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the eighth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2010), which once again is held as a workshop of BNCOD 2010 - the 27th International Information Systems Conference. TLAD 2010 is held on the 28th June at the beautiful Dudhope Castle at the Abertay University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.This year, the workshop includes an invited talk given by Richard Cooper (of the University of Glasgow) who will present a discussion and some results from the Database Disciplinary Commons which was held in the UK over the academic year. Due to the healthy number of high quality submissions this year, the workshop will also present seven peer reviewed papers, and six refereed poster papers. Of the seven presented papers, three will be presented as full papers and four as short papers. These papers and posters cover a number of themes, including: approaches to teaching databases, e.g. group centered and problem based learning; use of novel case studies, e.g. forensics and XML data; techniques and approaches for improving teaching and student learning processes; assessment techniques, e.g. peer review; methods for improving students abilities to develop database queries and develop E-R diagrams; and e-learning platforms for supporting teaching and learning

    Pattern recognition in the Early Warning generation process

    Get PDF
    This paper covers an analytical study of Early Warnings - a data object that is automatically generated when a customer order is created. Early Warnigns are then continuously created any time there is a change in expected delivery. Every day, a huge amount of Early Warnings is generated. The amount of data makes it difficult to evaluate and predict changes. A recognition of patterns in Early Warnings could support the planning process and also reduce uncertainty or stress regarding the huge wave of data that daily washes ashore. The study has been conducted by mainly considering the aspects of lead time, delivery date, Early Warning generation date and quantity. By alinging collected data based on the delivery date, a new perspective of the analysis was acheived. Instead of considering dd.mm.yy or week X of the lead time, the data points are sorted as "delivery date - X weeks of lead time". This has been referre to as Temporal variable analysis. Additionally, a grading of Early Warnings was set up to evaluate the accuracy of each update compared to final delivery. The results were presented in color-based scales and in compiled graphs for easy overview and analysis. The five main findings of the paper are that; (1) there is in fact consequent patterns in the analysis set up. (2) The utilization of several order lines, mainly due to partial consignments, strongly increase the number of Early Warnings generated. (3) Expedited delivery dates appear during all parts of the lead time, contrary to initial beliefs. (4) The total sum of shifts of Early Warnings is largely negative, this is due to the increased number of Early Warnings at the late stages of lead time that coincide with the gradually negative values of Early Warnings. (5) The finding can be visualized in a model that is easy to scale up for more empirical results. The main findings for the researcher can be summarized as; - Expected delivery is expedited for orders until a certain lead time until final delivery. After this point, the majority of Early Warnings are postponements of the expected delivery date. - More partial deliveries for an order strongly increases the number of Early Warnings generated and appears to lower the overall accuracy of the Early Warning compared to final delivery

    TLAD 2010 Proceedings:8th international workshop on teaching, learning and assesment of databases (TLAD)

    Get PDF
    This is the eighth in the series of highly successful international workshops on the Teaching, Learning and Assessment of Databases (TLAD 2010), which once again is held as a workshop of BNCOD 2010 - the 27th International Information Systems Conference. TLAD 2010 is held on the 28th June at the beautiful Dudhope Castle at the Abertay University, just before BNCOD, and hopes to be just as successful as its predecessors.The teaching of databases is central to all Computing Science, Software Engineering, Information Systems and Information Technology courses, and this year, the workshop aims to continue the tradition of bringing together both database teachers and researchers, in order to share good learning, teaching and assessment practice and experience, and further the growing community amongst database academics. As well as attracting academics from the UK community, the workshop has also been successful in attracting academics from the wider international community, through serving on the programme committee, and attending and presenting papers.This year, the workshop includes an invited talk given by Richard Cooper (of the University of Glasgow) who will present a discussion and some results from the Database Disciplinary Commons which was held in the UK over the academic year. Due to the healthy number of high quality submissions this year, the workshop will also present seven peer reviewed papers, and six refereed poster papers. Of the seven presented papers, three will be presented as full papers and four as short papers. These papers and posters cover a number of themes, including: approaches to teaching databases, e.g. group centered and problem based learning; use of novel case studies, e.g. forensics and XML data; techniques and approaches for improving teaching and student learning processes; assessment techniques, e.g. peer review; methods for improving students abilities to develop database queries and develop E-R diagrams; and e-learning platforms for supporting teaching and learning
    • …
    corecore