28,005 research outputs found
Class III PI3K regulates organismal glucose homeostasis by providing negative feedback on hepatic insulin signalling.
Defective hepatic insulin receptor (IR) signalling is a pathogenic manifestation of metabolic disorders including obesity and diabetes. The endo/lysosomal trafficking system may coordinate insulin action and nutrient homeostasis by endocytosis of IR and the autophagic control of intracellular nutrient levels. Here we show that class III PI3K--a master regulator of endocytosis, endosomal sorting and autophagy--provides negative feedback on hepatic insulin signalling. The ultraviolet radiation resistance-associated gene protein (UVRAG)-associated class III PI3K complex interacts with IR and is stimulated by insulin treatment. Acute and chronic depletion of hepatic Vps15, the regulatory subunit of class III PI3K, increases insulin sensitivity and Akt signalling, an effect that requires functional IR. This is reflected by FoxO1-dependent transcriptional defects and blunted gluconeogenesis in Vps15 mutant cells. On depletion of Vps15, the metabolic syndrome in genetic and diet-induced models of insulin resistance and diabetes is alleviated. Thus, feedback regulation of IR trafficking and function by class III PI3K may be a therapeutic target in metabolic conditions of insulin resistance
Metabolic Patterning on a Chip: Towards in vitro Liver Zonation of Primary Rat and Human Hepatocytes
An important number of healthy and diseased tissues shows spatial variations in their metabolic capacities across the tissue. The liver is a prime example of such heterogeneity where the gradual changes in various metabolic activities across the liver sinusoid is termed as “zonation” of the liver. Here, we introduce the Metabolic Patterning on a Chip (MPOC) platform capable of dynamically creating metabolic patterns across the length of a microchamber of liver tissue via actively enforced gradients of various metabolic modulators such as hormones and inducers. Using this platform, we were able to create continuous liver tissues of both rat and human origin with gradually changing metabolic activities. The gradients we have created in nitrogen, carbohydrate and xenobiotic metabolisms recapitulated an in vivo like zonation and zonal toxic response. Beyond its application in recapitulation of liver zonation in vitro as we demonstrate here, the MPOC platform can be used and expanded for a variety of purposes including better understanding of heterogeneity in many different tissues during developmental and adult stages
Animal models of NASH: getting both pathology and metabolic context right
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of referral to liver clinics, and its progressive form, non-alcoholic steatohepatitis (NASH), can lead to cirrhosis and end-stage liver disease. The main risk factors for NAFLD/NASH are the metabolic abnormalities commonly observed in metabolic syndrome: insulin resistance, visceral obesity, dyslipidemia and altered adipokine profile. At present, the causes of progression from NAFLD to NASH remain poorly defined, and research in this area has been limited
by the availability of suitable animal models of this disease. In the past, the main models used to investigate the pathogenesis of steatohepatitis have either failed to reproduce the full spectrum of liver pathology that characterizes human NASH, or the liver pathology has developed in a metabolic context that is not representative of the human condition. In the last few years, a number of models have been described in which the full spectrum of liver
pathology develops in an appropriate metabolic context. In general, the underlying cause of metabolic defects in these models is chronic caloric overconsumption, also known as
overnutrition. Overnutrition has been achieved in a number of different ways, including
forced feeding, administration of high-fat diets, the use of genetically hyperphagic animals, or a combination of these approaches. The purpose of the present review is to critique the liver pathology and metabolic abnormalities present in currently available animal models of
NASH, with particular focus on models described in approximately the last 5 years.This research was funded through a grant. - Research in the authors' laboratory is supported by program grant 358398 from the Australian National Health and Medical Research Council (NHMRC)
Hepatic regeneration and growth factors
Nessun abstrac
The role of autophagy in liver epithelial cells and its Impact on systemic homeostasis
Autophagy plays a role in several physiological and pathological processes as it controls
the turnover rate of cellular components and influences cellular homeostasis. The liver plays a
central role in controlling organisms’ metabolism, regulating glucose storage, plasma proteins and
bile synthesis and the removal of toxic substances. Liver functions are particularly sensitive to
autophagy modulation. In this review we summarize studies investigating how autophagy
influences the hepatic metabolism, focusing on fat accumulation and lipids turnover. We also
describe how autophagy affects bile production and the scavenger function within the complex
homeostasis of the liver. We underline the role of hepatic autophagy in counteracting the metabolic
syndrome and the associated cardiovascular risk. Finally, we highlight recent reports demonstrating
how the autophagy occurring within the liver may affect skeletal muscle homeostasis as well as
different extrahepatic solid tumors, such as melanoma
- …