72 research outputs found
Rashba split surface states in BiTeBr
Within density functional theory, we study bulk band structure and surface
states of BiTeBr. We consider both ordered and disordered phases which differ
in atomic order in the Te-Br sublattice. On the basis of relativistic ab-initio
calculations, we show that the ordered BiTeBr is energetically preferable as
compared with the disordered one. We demonstrate that both Te- and
Br-terminated surfaces of the ordered BiTeBr hold surface states with a giant
spin-orbit splitting. The Te-terminated surface-state spin splitting has the
Rashba-type behavior with the coupling parameter \alpha_R ~ 2 eV\AA.Comment: 8 pages, 7 figure
Many-body effects on the Rashba-type spin splitting in bulk bismuth tellurohalides
We report on many-body corrections to one-electron energy spectra of bulk
bismuth tellurohalides---materials that exhibit a giant Rashba-type spin
splitting of the band-gap edge states. We show that the corrections obtained in
the one-shot approximation noticeably modify the spin-orbit-induced spin
splitting evaluated within density functional theory. We demonstrate that
taking into account many-body effects is crucial to interpret the available
experimental data.Comment: 6 pages, 1 figur
The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)
Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important
candidates for developing spintronics devices, because of the coexistence of
spin-split bulk and surface states, along with the ambipolar character of the
surface charge carriers. The need of studying the spin texture of strongly
spin-orbit coupled materials has recently promoted circular dichroic Angular
Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure
the spin and the angular degrees of freedom. Here we report a detailed photon
energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our
work reveals a large variation of the magnitude and sign of the dichroism.
Interestingly, we find that the dichroic signal modulates differently for the
three compounds and for the different spin-split states. These findings show a
momentum and photon energy dependence for the cd-ARPES signals in the bulk
Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our
experiment indicates the important relation between the modulation of the
dichroism and the phase differences between the wave-functions involved in the
photoemission process. This phase difference can be due to initial or final
state effects. In the former case the phase difference results in possible
interference effects among the photo-electrons emitted from different atomic
layers and characterized by entangled spin-orbital polarized bands. In the
latter case the phase difference results from the relative phases of the
expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure
Optical properties of BiTeBr and BiTeCl
We present a comparative study of the optical properties - reflectance,
transmission and optical conductivity - and Raman spectra of two layered
bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized
in the a-b planes. Despite different space groups, the optical properties of
the two compounds are very similar. Both materials are doped semiconductors,
with the absorption edge above the optical gap which is lower in BiTeBr (0.62
eV) than in BiTeCl (0.77 eV). The same Rashba splitting is observed in the two
materials. A non-Drude free carrier contribution in the optical conductivity,
as well as three Raman and two infrared phonon modes, are observed in each
compound. There is a dramatic difference in the highest infrared phonon
intensity for the two compounds, and a difference in the doping levels. Aspects
of the strong electron-phonon interaction are identified. Several interband
transitions are assigned, among them the low-lying absorption which has
the same value 0.25 eV in both compounds, and is caused by the Rashba spin
splitting of the conduction band. An additional weak transition is found in
BiTeCl, caused by the lower crystal symmetry.Comment: Accepted in PR
Ideal two-dimensional electron systems with a giant Rashba-type spin splitting in real materials: surfaces of bismuth tellurohalides
Spintronics is aimed at active controlling and manipulating the spin degrees
of freedom in semiconductor devices. A promising way to achieve this goal is to
make use of the tunable Rashba effect that relies on the spin-orbit interaction
(SOI) in a two-dimensional (2D) electron system immersed in an
inversion-asymmetric environment. The SOI induced spin-splitting of the
2D-electron state provides a basis for many theoretically proposed spintronic
devices. However, the lack of semiconductors with large Rashba effect hinders
realization of these devices in actual practice. Here we report on a giant
Rashba-type spin splitting in 2D electron systems which reside at
tellurium-terminated surfaces of bismuth tellurohalides. Among these
semiconductors, BiTeCl stands out for its isotropic metallic surface-state band
with the Gamma-point energy lying deep inside the bulk band gap. The giant
spin-splitting of this band ensures a substantial spin asymmetry of the
inelastic mean free path of quasiparticles with different spin orientations.Comment: 12 pages, 5 figure
Termination-dependent surface properties in the giant-Rashba semiconductors BiTeX (X = Cl, Br, I)
The non-centrosymmetric semiconductors BiTeX (X = Cl, Br, I) show large
Rashba-type spin-orbit splittings in their electronic structure making them
candidate materials for spin-based electronics. However, BiTeI(0001) single
crystal surfaces usually consist of stacking-fault-induced domains of Te and I
terminations implying a spatially inhomogeneous electronic structure. Here we
combine scanning tunneling microscopy (STM), photoelectron spectroscopy (ARPES,
XPS) and density functional theory (DFT) calculations to systematically
investigate the structural and electronic properties of BiTeX(0001) surfaces.
For X = Cl, Br we observe macroscopic single-terminated surfaces. We discuss
chemical characteristics among the three materials in terms of bonding
character, surface electronic structure, and surface morphology.Comment: 12 pages, 5 figure
Pressure effects on crystal and electronic structure of bismuth tellurohalides
We study the possibility of pressure-induced transitions from a normal
semiconductor to a topological insulator (TI) in bismuth tellurohalides using
density functional theory and tight-binding method. In BiTeI this transition is
realized through the formation of an intermediate phase, a Weyl semimetal, that
leads to modification of surface state dispersions. In the topologically
trivial phase, the surface states exhibit a Bychkov-Rashba type dispersion. The
Weyl semimetal phase exists in a narrow pressure interval of 0.2 GPa. After the
Weyl semimetal--TI transition occurs, the surface electronic structure is
characterized by gapless states with linear dispersion. The peculiarities of
the surface states modification under pressure depend on the band-bending
effect. We have also calculated the frequencies of Raman active modes for BiTeI
in the proposed high-pressure crystal phases in order to compare them with
available experimental data. Unlike BiTeI, in BiTeBr and BiTeCl the topological
phase transition does not occur. In BiTeBr, the crystal structure changes with
pressure but the phase remains a trivial one. However, the transition appears
to be possible if the low-pressure crystal structure is retained. In BiTeCl
under pressure, the topological phase does not appear up to 18 GPa due to a
relatively large band gap width in this compound
- …