3,190 research outputs found
Classifying pairs with trees for supervised biological network inference
Networks are ubiquitous in biology and computational approaches have been
largely investigated for their inference. In particular, supervised machine
learning methods can be used to complete a partially known network by
integrating various measurements. Two main supervised frameworks have been
proposed: the local approach, which trains a separate model for each network
node, and the global approach, which trains a single model over pairs of nodes.
Here, we systematically investigate, theoretically and empirically, the
exploitation of tree-based ensemble methods in the context of these two
approaches for biological network inference. We first formalize the problem of
network inference as classification of pairs, unifying in the process
homogeneous and bipartite graphs and discussing two main sampling schemes. We
then present the global and the local approaches, extending the later for the
prediction of interactions between two unseen network nodes, and discuss their
specializations to tree-based ensemble methods, highlighting their
interpretability and drawing links with clustering techniques. Extensive
computational experiments are carried out with these methods on various
biological networks that clearly highlight that these methods are competitive
with existing methods.Comment: 22 page
Exploring the potential of 3D Zernike descriptors and SVM for protein\u2013protein interface prediction
Abstract Background The correct determination of protein–protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. Results In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein–Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). Conclusions The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction task, and that optimality strongly depends on the class of proteins whose interface we want to characterise. We postulate that different protein classes should be treated separately and that it is necessary to identify an optimal set of features for each protein class
Seeing the Forest for the Trees: Using the Gene Ontology to Restructure Hierarchical Clustering
Motivation: There is a growing interest in improving the cluster analysis of expression data by incorporating into it prior knowledge, such as the Gene Ontology (GO) annotations of genes, in order to improve the biological relevance of the clusters that are subjected to subsequent scrutiny. The structure of the GO is another source of background knowledge that can be exploited through the use of semantic similarity. Results: We propose here a novel algorithm that integrates semantic similarities (derived from the ontology structure) into the procedure of deriving clusters from the dendrogram constructed during expression-based hierarchical clustering. Our approach can handle the multiple annotations, from different levels of the GO hierarchy, which most genes have. Moreover, it treats annotated and unannotated genes in a uniform manner. Consequently, the clusters obtained by our algorithm are characterized by significantly enriched annotations. In both cross-validation tests and when using an external index such as protein–protein interactions, our algorithm performs better than previous approaches. When applied to human cancer expression data, our algorithm identifies, among others, clusters of genes related to immune response and glucose metabolism. These clusters are also supported by protein–protein interaction data. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.Lynne and William Frankel Center for Computer Science; Paul Ivanier center for robotics research and production; National Institutes of Health (R01 HG003367-01A1
Defining a robust biological prior from Pathway Analysis to drive Network Inference
Inferring genetic networks from gene expression data is one of the most
challenging work in the post-genomic era, partly due to the vast space of
possible networks and the relatively small amount of data available. In this
field, Gaussian Graphical Model (GGM) provides a convenient framework for the
discovery of biological networks. In this paper, we propose an original
approach for inferring gene regulation networks using a robust biological prior
on their structure in order to limit the set of candidate networks.
Pathways, that represent biological knowledge on the regulatory networks,
will be used as an informative prior knowledge to drive Network Inference. This
approach is based on the selection of a relevant set of genes, called the
"molecular signature", associated with a condition of interest (for instance,
the genes involved in disease development). In this context, differential
expression analysis is a well established strategy. However outcome signatures
are often not consistent and show little overlap between studies. Thus, we will
dedicate the first part of our work to the improvement of the standard process
of biomarker identification to guarantee the robustness and reproducibility of
the molecular signature.
Our approach enables to compare the networks inferred between two conditions
of interest (for instance case and control networks) and help along the
biological interpretation of results. Thus it allows to identify differential
regulations that occur in these conditions. We illustrate the proposed approach
by applying our method to a study of breast cancer's response to treatment
Machine Learning and Integrative Analysis of Biomedical Big Data.
Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
Predicting synthetic lethal interactions using conserved patterns in protein interaction networks
In response to a need for improved treatments, a number of promising novel targeted cancer therapies are being developed that exploit human synthetic lethal interactions. This is facilitating personalised medicine strategies in cancers where specific tumour suppressors have become inactivated. Mainly due to the constraints of the experimental procedures, relatively few human synthetic lethal interactions have been identified. Here we describe SLant (Synthetic Lethal analysis via Network topology), a computational systems approach to predicting human synthetic lethal interactions that works by identifying and exploiting conserved patterns in protein interaction network topology both within and across species. SLant out-performs previous attempts to classify human SSL interactions and experimental validation of the models predictions suggests it may provide useful guidance for future SSL screenings and ultimately aid targeted cancer therapy development
- …