35 research outputs found
New Directions in Degenerate Dipolar Molecules via Collective Association
We survey results on the creation of heteronuclear Fermi molecules by tuning
a degenerate Bose-Fermi mixture into the neighborhood of an association
resonance, either photoassociation or Feshbach, as well as the subsequent
prospects for Cooper-like pairing between atoms and molecules. In the simplest
case of only one molecular state, corresponding to either a Feshbach resonance
or one-color photoassociation, the system displays Rabi oscillations and rapid
adiabatic passage between a Bose-Fermi mixture of atoms and fermionic
molecules. For two-color photoassociation, the system admits stimulated Raman
adiabatic passage (STIRAP) from a Bose-Fermi mixture of atoms to stable Fermi
molecules, even in the presence of particle-particle interactions. By tailoring
the STIRAP sequence it is possible to deliberately convert only a fraction of
the initial atoms, leaving a finite fraction of bosons behind to induce
atom-molecule Cooper pairing via density fluctuations; unfortunately, this
enhancement is insufficient to achieve a superfluid transition with present
ultracold technology. We therefore propose the use of an association resonance
that converts atoms and diatomic molecules (dimers) into triatomic molecules
(trimers), which leads to a crossover from a Bose-Einstein condensate of
trimers to atom-dimer Cooper pairs. Because heteronuclear dimers may possess a
permanent electric dipole moment, this overall system presents an opportunity
to investigate novel microscopic physics.Comment: 10 pages, 5 figures, 77+ references, submitted to Euro. Phys. J.
topical issue on "Ultracold Polar Molecules: Formation and Collisions
Resource Letter BEC-1: Bose-Einstein Condensates in Trapped Dilute Gases
This Resource Letter provides a guide to the literature on Bose-Einstein
condensation in trapped dilute gases. Journal articles and books are cited for
the following topics: history, technological advances, condensates as quantum
fluids, effects of interatomic interactions, condensates as matter waves,
condensate optics, multiple condensates, lower dimensions, spectroscopy and
precision measurement, entanglement, and cosmology.Comment: 12 pages, 0 figure
Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics
Progress on researches in the field of molecules at cold and ultracold
temperatures is reported in this review. It covers extensively the experimental
methods to produce, detect and characterize cold and ultracold molecules
including association of ultracold atoms, deceleration by external fields and
kinematic cooling. Confinement of molecules in different kinds of traps is also
discussed. The basic theoretical issues related to the knowledge of the
molecular structure, the atom-molecule and molecule-molecule mutual
interactions, and to their possible manipulation and control with external
fields, are reviewed. A short discussion on the broad area of applications
completes the review.Comment: to appear in Reports on Progress in Physic
Cold and Ultracold Molecules: Science, Technology, and Applications
This article presents a review of the current state of the art in the
research field of cold and ultracold molecules. It serves as an introduction to
the Special Issue of the New Journal of Physics on Cold and Ultracold Molecules
and describes new prospects for fundamental research and technological
development. Cold and ultracold molecules may revolutionize physical chemistry
and few body physics, provide techniques for probing new states of quantum
matter, allow for precision measurements of both fundamental and applied
interest, and enable quantum simulations of condensed-matter phenomena.
Ultracold molecules offer promising applications such as new platforms for
quantum computing, precise control of molecular dynamics, nanolithography, and
Bose-enhanced chemistry. The discussion is based on recent experimental and
theoretical work and concludes with a summary of anticipated future directions
and open questions in this rapidly expanding research field.Comment: 82 pages, 9 figures, review article to appear in New Journal of
Physics Special Issue on Cold and Ultracold Molecule
Feshbach Resonances in Ultracold Gases
Feshbach resonances are the essential tool to control the interaction between
atoms in ultracold quantum gases. They have found numerous experimental
applications, opening up the way to important breakthroughs. This Review
broadly covers the phenomenon of Feshbach resonances in ultracold gases and
their main applications. This includes the theoretical background and models
for the description of Feshbach resonances, the experimental methods to find
and characterize the resonances, a discussion of the main properties of
resonances in various atomic species and mixed atomic species systems, and an
overview of key experiments with atomic Bose-Einstein condensates, degenerate
Fermi gases, and ultracold molecules.Comment: Review article, 63 pages, 48 figure
Interspecies Feshbach Resonances in an Ultracold, Optically Trapped Bose-Fermi Mixture of Cesium and Lithium
This thesis reports on the tunability of interactions in ultracold Bose-Fermi mixtures of Cesium and Lithium. The
first realization of an optically trapped
6Li -133Cs mixture enabled to perform trap loss spectroscopy measurements to identify
magnetic Feshbach resonances. A total of 19 interspecies Feshbach resonances, all in the magnetic field range between 650 G and 950 G, were observed for the two energetically lowest spin states of each species. Two 5 G broad and especially two 60 G broad s-wave resonances give perspectives to produce a dipolar quantum gas of LiCs ground state molecules as well as to study the Efimov effect in highly mass imbalanced systems. In addition, a unique relative tunability of intra- and interspecies
scattering lengths was found which makes the 6Li -133Cs system also well suited for the investigation of polarons. Evaporative cooling was performed on optically trapped samples which contained only one of the species. In this way, Bose-Einstein condensates of 6Li molecules as well as 133Cs samples at a phase-space density of p = 4 · 10^2 were prepared. All experiments were performed in a new apparatus, which has been designed and set up during this thesis
Effects of interaction in BEC
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2006.Includes bibliographical references (p. 150-167).This thesis discusses a series of studies that investigate the effects of interaction - essentially the s-wave scattering - in the various properties of Bose-Einstein condensates (BEC). The phonon wavefunction in a BEC was measured using Bragg spectroscopy and compared with the well-known Bogoliubov theory. Phonons were first excited in a BEC of 3 x 107 condensed 23Na atoms via small-angle two-photon Bragg scattering. Large angle Bragg scattering was then used to probe the momentum distribution. We found reasonable agreement with the theory. With the same technique of Bragg diffraction, we studied the four-wave mixing process for matter waves. The BEC was split into two strong source waves and a weak seed wave. The s-wave scattering coherently mixed pairs of atoms from the sources into the seed and its conjugate wave, creating a pair-correlated atomic beams with "squeezed" number difference. A Feshbach resonance was used to produce ultracold Na2 molecules with initial phase-space density in excess of 20. Starting from an atomic BEC, a magnetic field ramp shifted a bound state from above the threshold of the unbound continuum to below, creating a molecular population with almost zero center-of-mass motion.(cont.) A reverse field ramp dissociated the cold molecules into free atom pairs carrying kinetic energy dependent on the ramp speed. This dependence provided a measure of the coupling strength between the bound state and the continuum. Condensates were loaded into optical lattices formed with retro-reflected single frequency lasers. Quantum phase transition from the superfluid state to Mott-insulator state was observed in a three dimensional lattice. The increased interaction and flattened dispersion relation led to strongly enhanced quantum depletion in the superfluid state.by Kaiwen Xu.Ph.D
Microwave-shielded ultracold polar molecules
Since the realization of Bose--Einstein condensates and degenerate Fermi gases, ultracold atoms with tunable interactions have become an essential platform for studying quantum many-body phenomena. Notable examples include the realization of BCS--BEC crossover and the simulation of the Bose/Fermi Hubbard model. Ultracold polar molecules could enrich the quantum gas toolbox with their long-range dipole-dipole interaction, which offers not only new opportunities in many-body physics, such as realizing the topological superfluid and the extended Hubbard model, but also applications in quantum chemistry, quantum computation, and precision measurements. However, the large number of internal degrees of freedom of molecules present a significant challenge in both cooling them to quantum degeneracy and controlling their interactions. Unlike atomic gases, a dense molecular sample suffers from fast collisional losses, preventing the implementation of evaporative cooling and the observation of scattering resonances. In this thesis, we describe how we solved the long-standing issue of collisional losses by microwave shielding, created a degenerate Fermi gas of NaK molecules, and discovered a new type of scattering resonances via which we created the first ultracold tetratomic molecules in the 100-nK regime.
By synchronizing the rotation of polar molecules with a circularly polarized microwave electric field, we equip the molecular sample with a highly tunable intermolecular potential. This not only stabilizes the gas against inelastic collisions but also enables field-linked scattering resonances for precise control over scattering lengths. At long range, the molecules interact via their induced rotating dipole moments. As they approach each other, their orientations realign to produce a repulsive force, thereby mitigating inelastic collisions at close distances. With an elastic-to-inelastic collision ratio of 500, we have achieved evaporative cooling of the molecular gas down to 21 nK and 0.36 times the Fermi temperature, setting a new record for the coldest polar molecular gas to date.
Thanks to the collisional stability of microwave-shielded molecules, we can directly load them into predominantly a single layer of a magic 3D optical lattice, achieving a peak filling fraction of 24%. These ultracold molecules, owing to their long lifetimes in their ground state and their long-range dipolar coupling, provide a unique platform to study quantum magnetism. With the achieved high filling fraction, we are prepared to study non-equilibrium spin dynamics such as rotational synchronization and spin squeezing.
We demonstrated that the interaction between microwave-shielded polar molecules is highly tunable via the microwave power, detuning, and polarization. When the interaction potential is deep enough to host field-linked bound states at the collisional threshold, a shape resonance is induced, allowing us to tune the scattering rate by three orders of magnitude. The field-linked resonances enables controls over the scattering length in a similar fashion as Feshbach resonance for ultracold atoms, promising the realization of strongly correlated phases, such as dipolar -wave superfluid. It also paves the way to investigate the interplay between short-range and long-range interactions in novel quantum matters, such as exotic supersolid.
Moreover, through a field-linked resonance, we associated for the first time weakly bound tetratomic molecules in the 100-nK regime, with a phase space density of 0.04. The transition from a Fermi gas of diatomic molecules to a Bose gas of tetratomic molecules paves the way for dipolar BCS--BEC crossover.
With microwave-shielded polar molecules, we have realized a quantum gas featuring highly tunable long-range interactions. The technique is universal to polar molecules with a sufficiently large dipole moment, and thus offers a general strategy for cooling and manipulating polar molecules, and for associating weakly bound ultracold polyatomic molecules. Utilizing the toolbox developed in ultracold atoms, this platform possesses the potential to unlock an entirely new realm of quantum simulation of many-body physics