225,935 research outputs found

    Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Full text link
    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.Comment: 9 pages, 2 figure

    On the combinatorics of sparsification

    Get PDF
    Background: We study the sparsification of dynamic programming folding algorithms of RNA structures. Sparsification applies to the mfe-folding of RNA structures and can lead to a significant reduction of time complexity. Results: We analyze the sparsification of a particular decomposition rule, Λ∗\Lambda^*, that splits an interval for RNA secondary and pseudoknot structures of fixed topological genus. Essential for quantifying the sparsification is the size of its so called candidate set. We present a combinatorial framework which allows by means of probabilities of irreducible substructures to obtain the expected size of the set of Λ∗\Lambda^*-candidates. We compute these expectations for arc-based energy models via energy-filtered generating functions (GF) for RNA secondary structures as well as RNA pseudoknot structures. For RNA secondary structures we also consider a simplified loop-energy model. This combinatorial analysis is then compared to the expected number of Λ∗\Lambda^*-candidates obtained from folding mfe-structures. In case of the mfe-folding of RNA secondary structures with a simplified loop energy model our results imply that sparsification provides a reduction of time complexity by a constant factor of 91% (theory) versus a 96% reduction (experiment). For the "full" loop-energy model there is a reduction of 98% (experiment).Comment: 27 pages, 12 figure

    Zero Temperature Properties of RNA Secondary Structures

    Full text link
    We analyze different microscopic RNA models at zero temperature. We discuss both the most simple model, that suffers a large degeneracy of the ground state, and models in which the degeneracy has been remove, in a more or less severe manner. We calculate low-energy density of states using a coupling perturbing method, where the ground state of a modified Hamiltonian, that repels the original ground state, is determined. We evaluate scaling exponents starting from measurements of overlaps and energy differences. In the case of models without accidental degeneracy of the ground state we are able to clearly establish the existence of a glassy phase with θ≃1/3\theta \simeq 1/3.Comment: 20 pages including 9 eps figure
    • …
    corecore