1,445,495 research outputs found
The Sound and the Fury (April Seventh, 1928): Screening and Discussion
Cast: John Collins, Vin Knight, Greig Sargent, and Ben William
Corrective Feedback and Repair Strategies in Meaning-focused Language Classroom
The practice of corrective feedback in communicative language classroom has become a debate among applied linguists. Some consider it obstructs students' fluent speech and some assert it is vital to show students their linguistic gaps. This study aims to describe the practice of oral corrective feedback in meaning-focused instruction specifically to answer the questions 1) what is to correct, 2) how it is corrected, and 3) how repair is constructed. The data are in the forms of teacher's and students' utterances obtained through video recording during meaning-focused instruction in a secondary school. The result shows that in meaning-focused instruction, the ESL teacher mainly corrects semantic errors and among six types of corrective feedback (explicit correction, recast, clarification request, metalinguistic feedback, elicitation, and repetition), the teacher mostly uses elicitation and recast while the repair strategies that occur in this class takes the pattern of other initiation-self repair. So, it can be concluded that in a meaning-focused instruction the teacher does not relatively interrupt the students' fluent speech and that the communicative activity is maintained. And with self-repair, students notice their linguistic gaps. Therefore corrective feedback is still worth practicing in meaning-focused language classrooms
Increasing Availability in Distributed Storage Systems via Clustering
We introduce the Fixed Cluster Repair System (FCRS) as a novel architecture
for Distributed Storage Systems (DSS), achieving a small repair bandwidth while
guaranteeing a high availability. Specifically we partition the set of servers
in a DSS into clusters and allow a failed server to choose any cluster
other than its own as its repair group. Thereby, we guarantee an availability
of . We characterize the repair bandwidth vs. storage trade-off for the
FCRS under functional repair and show that the minimum repair bandwidth can be
improved by an asymptotic multiplicative factor of compared to the state
of the art coding techniques that guarantee the same availability. We further
introduce Cubic Codes designed to minimize the repair bandwidth of the FCRS
under the exact repair model. We prove an asymptotic multiplicative improvement
of in the minimum repair bandwidth compared to the existing exact repair
coding techniques that achieve the same availability. We show that Cubic Codes
are information-theoretically optimal for the FCRS with and complete
clusters. Furthermore, under the repair-by-transfer model, Cubic Codes are
optimal irrespective of the number of clusters
A Repair Framework for Scalar MDS Codes
Several works have developed vector-linear maximum-distance separable (MDS)
storage codes that min- imize the total communication cost required to repair a
single coded symbol after an erasure, referred to as repair bandwidth (BW).
Vector codes allow communicating fewer sub-symbols per node, instead of the
entire content. This allows non trivial savings in repair BW. In sharp
contrast, classic codes, like Reed- Solomon (RS), used in current storage
systems, are deemed to suffer from naive repair, i.e. downloading the entire
stored message to repair one failed node. This mainly happens because they are
scalar-linear. In this work, we present a simple framework that treats scalar
codes as vector-linear. In some cases, this allows significant savings in
repair BW. We show that vectorized scalar codes exhibit properties that
simplify the design of repair schemes. Our framework can be seen as a finite
field analogue of real interference alignment. Using our simplified framework,
we design a scheme that we call clique-repair which provably identifies the
best linear repair strategy for any scalar 2-parity MDS code, under some
conditions on the sub-field chosen for vectorization. We specify optimal repair
schemes for specific (5,3)- and (6,4)-Reed- Solomon (RS) codes. Further, we
present a repair strategy for the RS code currently deployed in the Facebook
Analytics Hadoop cluster that leads to 20% of repair BW savings over naive
repair which is the repair scheme currently used for this code.Comment: 10 Pages; accepted to IEEE JSAC -Distributed Storage 201
Arthroscopic transosseous rotator cuff repair: A prospective study on cost savings, surgical time, and outcomes
Objectives: Health expenditures in the United States are outpacing national income, and affordability has become a major policy issue. Over 500,000 rotator cuff repairs (RCR) are performed annually in the United States making RCR a potential source of cost savings. Arthroscopic trans-osseous equivalent (TOE) repair using a double row of anchors has shown superior biomechanical strength compared to other techniques, but at a higher cost. The arthroscopic transosseous (TO) repair is a novel technique allowing arthroscopic rotator cuff repair to be performed without suture anchors. Arthroscopic TO repair may be a means to provide similarly excellent patient outcomes while lowering the cost of care. The primary purpose is to compare the price differential and time of surgery for an arthroscopic rotator cuff repair using anchorless TO repair verses an anchor trans-osseous equivalent (TOE) repair. A secondary purpose of the study was to evaluate outcomes at 6 months postoperatively. Methods: A prospective, case-controlled study evaluating arthroscopic rotator cuff repair using two techniques was performed. The study group consisting of 21 patients undergoing TO repair was compared to a control group consisting of 22 patients undergoing TOE repair. The groups were controlled for size of tear, biceps treatment, acromioplasty, distal clavicle excision, and labral pathology. The primary outcome measures were surgical time as well as total cost of implants and equipment for each surgery, determined by an independent third party, Atlanticare Hospital. Secondary outcomes were changes in the SST, VAS, and SANE scores. Results: Mean total surgical implant/equipment cost per procedure for TOE repair was 1204.97 (SD 330.69; p\u3c0.0001). Mean cut to close time for TOE repair was 85 minutes (95% CI is 77-90) verses 74 (95% CI = 71-98) for TO repair. A log rank test revealed no difference in time (p =0.95). A linear regression model was developed to evaluate the change in SST, VAS, and SANE scores from pre-op to 6 months follow-up. Our study was underpowered but no difference in outcome was observed. Conclusion: Arthroscopic TO rotator cuff repair is a cost savings and time neutral technique compared to TOE repair. A mean of $1100 can be saved in surgical cost per case. In a country that performs over 500,000 RCRs annually, utilizing a TO repair technique can provide substantial cost savings to the healthcare system. © The Author(s) 2015
Tagged repair techniques for defect tolerance in hybrid nano/CMOS architecture
We propose two new repair techniques for hybrid nano/CMOS computing architecture with lookup table based Boolean logic. Our proposed techniques use tagging mechanism to provide high level of defect tolerance and we present theoretical equations to predict the repair capability including an estimate of the repair cost. The repair techniques are efficient in utilization of spare units and capable of targeting upto 20% defect rates, which is higher than recently reported repair techniques
- …