104,765 research outputs found
Long-Term Outcome After Renal Replacement Therapy in Severe Burns
Acute kidney injury is a common sequela after major burn injury, but only a small proportion of patients need renal replacement therapy. In the majority of patients, need for renal replacement therapy subsides before discharge from the burn center but limited literature exists on long-term outcomes. A few studies report an increased risk for chronic renal failure after burn injury. We investigated the long-term outcome of severely burned patients receiving renal replacement therapy during acute burn injury treatment. Data on 68 severely burned patients who received renal replacement therapy in Helsinki Burn Centre between November 1988 and December 2015 were collected retrospectively. Thirty-two patients survived and remained for follow-up after the primary hospital stay until December 31, 2016. About 56.3% of discharged patients were alive at the end of follow-up. In 81.3% of discharged patients, need for renal replacement therapy subsided before discharge. Two patients received renal replacement therapy for longer than 3 months; however, need for renal replacement therapy subsided in both patients. One patient required dialysis several years later on after the need for renal replacement therapy had subsided. This study showed that long-term need for renal replacement therapy is rare after severe burn injury. In the vast majority of patients, need for renal replacement therapy subsided before discharge from primary care. Acute kidney injury in association with burns is a potential but small risk factor for later worsening of kidney function in fragile individuals.Peer reviewe
Association between urinary sodium, creatinine, albumin, and long term survival in chronic kidney disease
Dietary sodium intake is associated with hypertension and cardiovascular risk in the general population. In patients with chronic kidney disease, sodium intake has been associated with progressive renal disease, but not independently of proteinuria. We studied the relationship between urinary sodium excretion and urinary sodium:creatinine ratio and mortality or requirement for renal replacement therapy in chronic kidney disease. Adults attending a renal clinic who had at least one 24-hour urinary sodium measurement were identified. 24-hour urinary sodium measures were collected and urinary sodium:creatinine ratio calculated. Time to renal replacement therapy or death was recorded. 423 patients were identified with mean estimated glomerular filtration rate of 48ml/min/1.73m<sup>2</sup>. 90 patients required renal replacement therapy and 102 patients died. Mean slope decline in estimated glomerular filtration rate was -2.8ml/min/1.73m<sup>2</sup>/year. Median follow-up was 8.5 years. Patients who died or required renal replacement therapy had significantly higher urinary sodium excretion and urinary sodium:creatinine but the association with these parameters and poor outcome was not independent of renal function, age and albuminuria. When stratified by albuminuria, urinary sodium:creatinine was a significant cumulative additional risk for mortality, even in patients with low level albuminuria. There was no association between low urinary sodium and risk, as observed in some studies. This study demonstrates an association between urinary sodium excretion and mortality in chronic kidney disease, with a cumulative relationship between sodium excretion, albuminuria and reduced survival. These data support reducing dietary sodium intake in chronic kidney disease but further study is required to determine the target sodium intake
Epidemiology and Outcome of Critically Ill Pediatric Cancer and Hematopoietic Stem Cell Transplant Patients Requiring Continuous Renal Replacement Therapy:A Retrospective Nationwide Cohort Study
OBJECTIVE: Acute kidney injury requiring continuous renal replacement therapy is a serious treatment-related complication in pediatric cancer and hematopoietic stem cell transplant patients. The purpose of this study was to assess epidemiology and outcome of these patients requiring continuous renal replacement therapy in the PICU. DESIGN: A nationwide, multicenter, retrospective, observational study. SETTING: Eight PICUs of a tertiary care hospitals in the Netherlands. PATIENTS: Pediatric cancer and hematopoietic stem cell transplant patients (cancer and noncancer) who received continuous renal replacement therapy from January 2006 to July 2017 in the Netherlands.None. MEASUREMENT AND MAIN RESULTS: Of 1,927 PICU admissions of pediatric cancer and hematopoietic stem cell transplant patients, 68 of 70 evaluable patients who received continuous renal replacement therapy were included. Raw PICU mortality was 11.2% (216/1,972 admissions). PICU mortality of patients requiring continuous renal replacement therapy was 54.4% (37/68 patients). Fluid overload (odds ratio, 1.08; 95% CI, 1.01-1.17) and need for inotropic support (odds ratio, 6.53; 95% CI, 1.86-23.08) at the start of continuous renal replacement therapy were associated with PICU mortality. Serum creatinine levels increased above 150% of baseline 3 days before the start of continuous renal replacement therapy. Urine production did not reach the critical limit of oliguria. In contrast, body weight (fluid overload) increased already 5 days prior to continuous renal replacement therapy initiation. CONCLUSIONS: PICU mortality of pediatric cancer and hematopoietic stem cell transplant patients requiring continuous renal replacement therapy is sadly high. Fluid overload at the initiation of continuous renal replacement therapy is the most important and earliest predictor of PICU mortality. Our results suggest that the most commonly used criteria of acute kidney injury, that is, serum creatinine and urine production, are not useful as a trigger to initiate continuous renal replacement therapy. This highlights the urgent need for prospective studies to generate recommendations for effective therapeutic interventions at an early phase in this specific patient population
Parenteral nutrition in patients with renal failure – Guidelines on Parenteral Nutrition, Chapter 17
Partial EN (enteral nutrition) should always be aimed for in patients with renal failure that require nutritional support. Nevertheless PN (parenteral nutrition) may be necessary in renal failure in patient groups with acute or chronic renal failure (ARF or CRF) and additional acute diseases but without extracorporeal renal replacement therapy, or in patients with ARF or CRF with additional acute diseases on extracorporeal renal replacement therapy, haemodialysis therapy (HD), peritoneal dialysis (PD) or continuous renal replacement therapy (CRRT), or in patients on HD therapy with intradialytic PN. Patients with renal failure who show marked metabolic derangements and changes in nutritional requirements require the use of specifically adapted nutrient solutions. The substrate requirements of acutely ill, non-hypercatabolic patients with CRF correspond to those of patients with ARF who are not receiving any renal replacement patients therapy (utilisation of the administered nutrients has to be monitored carefully). In ARF patients and acutely ill CRF patients on renal replacement therapy, substrate requirements depend on disease severity, type and extent/frequency of extracorporeal renal replacement therapy, nutritional status, underlying disease and complications occurring during the course of the disease. Patients under HD have a higher risk of developing malnutrition. Intradialytic PN (IDPN) should be used if causes of malnutrition cannot be eliminated and other interventions fail. IDPN should only be carried out when modifiable causes of malnutrition are excluded and enhanced oral (like i.e. additional energy drinks) or enteral supply is unsuccessful or cannot be carried out
External validation of a risk stratification model to assist shared decision making for patients starting renal replacement therapy
BACKGROUND: Shared decision making is nowadays acknowledged as an essential step when deciding on starting renal replacement therapy. Valid risk stratification of prognosis is, besides discussing quality of life, crucial in this regard. We intended to validate a recently published risk stratification model in a large cohort of incident patients starting renal replacement therapy in Flanders.
METHODS: During 3 years (2001-2003), the data set collected for the Nederlandstalige Belgische Vereniging voor Nefrologie (NBVN) registry was expanded with parameters of comorbidity. For all incident patients, the abbreviated REIN score(aREIN), being the REIN score without the parameter "mobility", was calculated, and prognostication of mortality at 3, 6 and 12 month after start of renal replacement therapy (RRT) was evaluated.
RESULTS: Three thousand four hundred seventy-two patients started RRT in Flanders during the observation period (mean age 67.6 ± 14.3, 56.7 % men, 33.6 % diabetes). The mean aREIN score was 4.1 ± 2.8, and 56.8, 23.1, 12.6 and 7.4 % of patients had a score of ≤4, 5-6, 7-8 or ≥9 respectively. Mortality at 3, 6 and 12 months was 8.6, 14.1 and 19.6 % in the overall and 13.2, 21.5 and 31.9 % in the group with age >75 respectively. In RoC analysis, the aREIN score had an AUC of 0.74 for prediction of survival at 3, 6 and 12 months. There was an incremental increase in mortality with the aREIN score from 5.6 to 45.8 % mortality at 6 months for those with a score ≤4 or ≥9 respectively.
CONCLUSION: The aREIN score is a useful tool to predict short term prognosis of patients starting renal replacement therapy as based on comorbidity and age, and delivers meaningful discrimination between low and high risk populations. As such, it can be a useful instrument to be incorporated in shared decision making on whether or not start of dialysis is worthwhile
A Monte Carlo Simulation Approach for Beta‐Lactam Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy
Cefepime, ceftazidime, and piperacillin/tazobactam are commonly used beta‐lactam antibiotics in the critical care setting. For critically ill patients receiving prolonged intermittent renal replacement therapy (PIRRT), limited pharmacokinetic data are available to inform clinicians on the dosing of these agents. Monte Carlo simulations (MCS) can be used to guide drug dosing when pharmacokinetic trials are not feasible. For each antibiotic, MCS using previously published pharmacokinetic data derived from critically ill patients was used to evaluate multiple dosing regimens in 4 different prolonged intermittent renal replacement therapy effluent rates and prolonged intermittent renal replacement therapy duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis and hemofiltration modes). Antibiotic regimens were also modeled depending on whether drugs were administered during or well before prolonged intermittent renal replacement therapy therapy commenced. The probability of target attainment (PTA) was calculated using each antibiotic’s pharmacodynamic target during the first 48 hours of therapy. Optimal doses were defined as the smallest daily dose achieving ≥90% probability of target attainment in all prolonged intermittent renal replacement therapy effluent and duration combinations. Cefepime 1 g every 6 hours following a 2 g loading dose, ceftazidime 2 g every 12 hours, and piperacillin/tazobactam 4.5 g every 6 hours attained the desired pharmacodynamic target in ≥90% of modeled prolonged intermittent renal replacement therapy patients. Alternatively, if an every 6‐hours cefepime regimen is not desired, the cefepime 2 g pre‐prolonged intermittent renal replacement therapy and 3 g post‐prolonged intermittent renal replacement therapy regimen also met targets. For ceftazidime, 1 g every 6 hours or 3 g continuous infusion following a 2 g loading dose also met targets. These recommended doses provide simple regimens that are likely to achieve the pharmacodynamics target while yielding the least overall drug exposure, which should result in lower toxicity rates. These findings should be validated in the clinical setting.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145557/1/jcph1137.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145557/2/jcph1137_am.pd
How I prescribe prolonged intermittent renal replacement therapy
Prolonged Intermittent Renal Replacement Therapy (PIRRT) is the term used to define \u27hybrid\u27 forms of renal replacement therapy. PIRRT can be provided using an intermittent hemodialysis machine or a continuous renal replacement therapy (CRRT) machine. Treatments are provided for a longer duration than typical intermittent hemodialysis treatments (6-12 h vs. 3-4 h, respectively) but not 24 h per day as is done for continuous renal replacement therapy (CRRT). Usually, PIRRT treatments are provided 4 to 7 times per week. PIRRT is a cost-effective and flexible modality with which to safely provide RRT for critically ill patients. We present a brief review on the use of PIRRT in the ICU with a focus on how we prescribe it in that setting
The evaluation of sequential platelet counts has prognostic value for acute kidney injury patients requiring dialysis in the intensive care setting
OBJECTIVE: To evaluate the prognostic value of platelet counts in acute kidney injury patients requiring renal replacement therapy. METHODS: This prospective cohort study was performed in three tertiary-care hospitals. Platelet counts were obtained upon admission to the intensive care unit and during the first week of renal replacement therapy on days 1, 3, 5 and 7. The outcome of interest was the hospital mortality rate. With the aim of minimizing individual variation, we analyzed the relative platelet counts on days 3, 5, 7 and at the point of the largest variation during the first week of renal replacement therapy. Logistic regression analysis was used to test the prognostic value of the platelet counts. RESULTS: The study included 274 patients. The hospital mortality rate was 62%. The survivors had significantly higher platelet counts upon admission to the intensive care unit compared to the non-survivors [175.5×103/mm3 (108.5-259×103/mm3) vs. 148×103/mm3 (80−141×103/mm3)] and during the first week of renal replacement therapy. The relative platelet count reductions were significantly associated with a higher hospital mortality rate compared with the platelet count increases (70% vs. 44% at the nadir, respectively). A relative platelet count reduction >;60% was significantly associated with a worse outcome (mortality rate = 82.6%). Relative platelet count variations and the percentage of reduction were independent risk factors of hospital mortality during the first week of renal replacement therapy. CONCLUSION: Platelet counts upon admission to the intensive care unit and at the beginning of renal replacement therapy as well as sequential platelet count evaluation have prognostic value in acute kidney injury patients requiring renal replacement therapy
Peritoneal Dialysis in Renal Replacement Therapy for Patients with Acute Kidney Injury
Peritoneal dialysis (PD) was the first modality used for renal replacement therapy (RRT) of patients with acute kidney injury (AKI) because of its inherent advantages as compared to Hemodialysis. It provides the nephrologist with nonvascular alternative for renal replacement therapy. It is an inexpensive modality in developing countries and does not require highly trained staff or a complex apparatus. Systemic anticoagulation is not needed, and it can be easily initiated. It can be used as continuous or intermittent procedure and, due to slow fluid and solute removal, helps maintain hemodynamic stability especially in patients admitted to the intensive care unit. PD has been successfully used in AKI involving patients with hemodynamic instability, those at risk of bleeding, and infants and children with AKI or circulatory failure. Newer continuous renal replacement therapies (CRRTs) are being increasingly used in renal replacement therapy of AKI with less use of PD. Results of studies comparing newer modalities of CRRT versus acute peritoneal dialysis have been conflicting. PD is the modality of choice in renal replacement therapy in pediatric patients and in patients with AKI in developing countries
Understanding cost of care for patients on renal replacement therapy: looking beyond fixed tariffs.
BACKGROUND: In a number of countries, reimbursement to hospitals providing renal dialysis services is set according to a fixed tariff. While the cost of maintenance dialysis and transplant surgery are amenable to a system of fixed tariffs, patients with established renal failure commonly present with comorbid conditions that can lead to variations in the need for hospitalization beyond the provision of renal replacement therapy. METHODS: Patient-level cost data for incident renal replacement therapy patients in England were obtained as a result of linkage of the Hospital Episodes Statistics dataset to UK Renal Registry data. Regression models were developed to explore variations in hospital costs in relation to treatment modality, number of years on treatment and factors such as age and comorbidities. The final models were then used to predict annual costs for patients with different sets of characteristics. RESULTS: Excluding the cost of renal replacement therapy itself, inpatient costs generally decreased with number of years on treatment for haemodialysis and transplant patients, whereas costs for patients receiving peritoneal dialysis remained constant. Diabetes was associated with higher mean annual costs for all patients irrespective of treatment modality and hospital setting. Age did not have a consistent effect on costs. CONCLUSIONS: Combining predicted hospital costs with the fixed costs of renal replacement therapy showed that the total cost differential for a patient continuing on dialysis rather than receiving a transplant is considerable following the first year of renal replacement therapy, thus reinforcing the longer-term economic advantage of transplantation over dialysis for the health service.<br/
- …