567,199 research outputs found
Linear preservers and quantum information science
Let be positive integers, the set of complex
matrices and the set of complex matrices. Regard as
the tensor space . Suppose is the Ky Fan -norm
with , or the Schatten -norm with
() on . It is shown that a linear map satisfying for all
and if and only if there are unitary such that
has the form ,
where is either the identity map or the
transposition map . The results are extended to tensor space
of higher level. The connection of the
problem to quantum information science is mentioned.Comment: 13 page
Introduction to Quantum Information Processing
As a result of the capabilities of quantum information, the science of
quantum information processing is now a prospering, interdisciplinary field
focused on better understanding the possibilities and limitations of the
underlying theory, on developing new applications of quantum information and on
physically realizing controllable quantum devices. The purpose of this primer
is to provide an elementary introduction to quantum information processing, and
then to briefly explain how we hope to exploit the advantages of quantum
information. These two sections can be read independently. For reference, we
have included a glossary of the main terms of quantum information.Comment: 48 pages, to appear in LA Science. Hyperlinked PDF at
http://www.c3.lanl.gov/~knill/qip/prhtml/prpdf.pdf, HTML at
http://www.c3.lanl.gov/~knill/qip/prhtm
Quantum Information Dynamics and Open World Science
One of the fundamental insights of quantum mechanics is that complete knowledge of the state of a quantum system is not possible. Such incomplete knowledge of a physical system is the norm rather than the exception. This is becoming increasingly apparent as we apply scientific methods to increasingly complex situations. Empirically intensive disciplines in the biological, human, and geosciences all operate in situations where valid conclusions must be drawn, but deductive completeness is impossible. This paper argues that such situations are emerging examples of {it Open World} Science. In this paradigm, scientific models are known to be acting with incomplete information. Open World models acknowledge their incompleteness, and respond positively when new information becomes available. Many methods for creating Open World models have been explored analytically in quantitative disciplines such as statistics, and the increasingly mature area of machine learning. This paper examines the role of quantum theory and quantum logic in the underpinnings of Open World models, examining the importance of structural features of such as non-commutativity, degrees of similarity, induction, and the impact of observation. Quantum mechanics is not a problem around the edges of classical theory, but is rather a secure bridgehead in the world of science to come
Quantum Communication
Quantum communication, and indeed quantum information in general, has changed
the way we think about quantum physics. In 1984 and 1991, the first protocol
for quantum cryptography and the first application of quantum non-locality,
respectively, attracted a diverse field of researchers in theoretical and
experimental physics, mathematics and computer science. Since then we have seen
a fundamental shift in how we understand information when it is encoded in
quantum systems. We review the current state of research and future directions
in this new field of science with special emphasis on quantum key distribution
and quantum networks.Comment: Submitted version, 8 pg (2 cols) 5 fig
- …