112,080 research outputs found

    The squashed entanglement of the noiseless quantum Gaussian attenuator and amplifier

    Get PDF
    We determine the maximum squashed entanglement achievable between sender and receiver of the noiseless quantum Gaussian attenuators and amplifiers and we prove that it is achieved sending half of an infinitely squeezed two-mode vacuum state. The key ingredient of the proof is a lower bound to the squashed entanglement of the quantum Gaussian states obtained applying a two-mode squeezing operation to a quantum thermal Gaussian state tensored with the vacuum state. This is the first lower bound to the squashed entanglement of a quantum Gaussian state and opens the way to determine the squashed entanglement of all quantum Gaussian channels. Moreover, we determine the classical squashed entanglement of the quantum Gaussian states above and show that it is strictly larger than their squashed entanglement. This is the first time that the classical squashed entanglement of a mixed quantum Gaussian state is determined

    Physical Resources for Quantum-enhanced Phase Estimation

    Full text link
    We study the role of quantum entanglement (particle entanglement and mode entanglement) in optical phase estimation by employing the first and second quantization formalisms of quantum mechanics. The quantum Fisher information (QFI) is expressed as a function of the first and second order optical coherence functions. The resulting form of the QFI elucidates the deriving metrological resources for quantum phase estimation: field intensity and photon detection correlations. In addition, our analysis confirms that mode entanglement is not required for quantum-enhanced interferometry, whereas particle entanglement is a necessary requirement.Comment: 8 pages, 2 figures, 2 table

    Computing quantum discord is NP-complete

    Full text link
    We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.Comment: The (published) journal version http://iopscience.iop.org/1367-2630/16/3/033027/article is more updated than the arXiv versions, and is accompanied with a general scientific summary for non-specialists in computational complexit

    Entanglement of spin waves among four quantum memories

    Get PDF
    Quantum networks are composed of quantum nodes that interact coherently by way of quantum channels and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a `web' for connecting quantum processors for computation and communication, as well as a `simulator' for enabling investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and of efficiently transferring stored entanglement into quantum channels for distribution across the network. While such capabilities have been demonstrated for diverse bipartite systems (i.e., N=2 quantum systems), entangled states with N > 2 have heretofore not been achieved for quantum interconnects that coherently `clock' multipartite entanglement stored in quantum memories to quantum channels. Here, we demonstrate high-fidelity measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of atomic entanglement to four photonic quantum channels; and the characterization of the full quadripartite entanglement by way of quantum uncertainty relations. Our work thereby provides an important tool for the distribution of multipartite entanglement across quantum networks.Comment: 4 figure
    • …
    corecore