545 research outputs found
New two-colour light curves of Q0957+561: time delays and the origin of intrinsic variations
We extend the gr-band time coverage of the gravitationally lensed double
quasar Q0957+561. New gr light curves permit us to detect significant intrinsic
fluctuations, to determine new time delays, and thus to gain perspective on the
mechanism of intrinsic variability in Q0957+561. We use new optical frames of
Q0957+561 in the g and r passbands from January 2005 to July 2007. These frames
are part of an ongoing long-term monitoring with the Liverpool robotic
telescope. We also introduce two photometric pipelines that are applied to the
new gr frames of Q0957+561. The transformation pipeline incorporates
zero-point, colour, and inhomogeneity corrections to the instrumental
magnitudes, so final photometry to the 1-2% level is achieved for both quasar
components. The two-colour final records are then used to measure time delays.
The gr light curves of Q0957+561 show several prominent events and gradients,
and some of them (in the g band) lead to a time delay between components of 417
+/- 2 d (1 sigma). We do not find evidence of extrinsic variability in the
light curves of Q0957+561. We also explore the possibility of a delay between a
large event in the g band and the corresponding event in the r band. The gr
cross-correlation reveals a time lag of 4.0 +/- 2.0 d (1 sigma; the g-band
event is leading) that confirms a previous claim of the existence of a delay
between the g and r band in this lensed quasar. The time delays (between quasar
components and between optical bands) from the new records and previous ones in
similar bands indicate that most observed variations in Q0957+561 (amplitudes
of about 100 mmag and timescales of about 100 d) are very probably due to
reverberation within the gas disc around the supermassive black hole.Comment: 13 pages, 9 figures. Accepted for publication in A&
Hourly Variability in Q0957+561
We have continued our effort to re-reduce archival Q0957+561 brightness
monitoring data and present results for 1629 R-band images using the methods
for galaxy subtraction and seeing correction reported previously. The new
dataset comes from 4 observing runs, several nights apiece, with sampling of
typically 5 minutes, which allows the first measurement of the structure
function for variations in the R-band from timescales of hours to years.
Comparison of our reductions to previous reductions of the same data, and to
r-band photometry produced at Apache Point Observatory shows good overall
agreement. Two of the data runs, separated by 417 days, permit a sharpened
value for the time delay of 417.4 days, valid only if the time delay is close
to the now-fashionable 417-day value; our data do not constrain a delay if it
is more than three days from this 417-day estimate. Our present results show no
unambiguous signature of the daily microlensing, though a suggestive feature is
found in the data. Both time delay measurement and microlensing searches suffer
from from the lack of sampling at half-day offsets, inevitable at a single
observatory, hence the need for round-the-clock monitoring with participation
by multiple observatories.Comment: AASTeX 4.0 preprint style, 21 pages, 8 EPS figure
A Large Brightness Enhancement of the QSO 0957+561 A Component
We report an increase of more than 0.2 mag in the optical brightness of the
leading image (A) of the gravitational lens Q0957+561, detected during the
09/2000 -- 06/2001 monitoring campaign (2001 observing season). The brightening
is similar to or even greater than the largest change ever detected during the
20 years of monitoring of this system. We discuss two different provisional
explanations to this event: intrinsic source variability or microlensing
(either short timescale microlensing or cessation of the historical
microlensing). An exhaustive photometric monitoring of Q0957+561 is needed
until summer of 2002 and during 2003 to discriminate between these
possibilities.Comment: 13 pages including 3 figures and 1 table. Accepted for publication in
ApJ Let
X-ray Detection of the Primary Lens Galaxy Cluster of the Gravitational Lens System Q0957+561
Analysis of several recent ROSAT HRI observations of the gravitationally
lensed system Q0957+561 has led to the detection at the 3sigma level of the
cluster lens containing the primary galaxy G1. The total mass was estimated by
applying the equation of hydrostatic equilibrium to the detected hot
intracluster gas for a range of cluster core radii, cluster sizes and for
different values of the Hubble constant. X-ray estimates of the lensing cluster
mass provide a means to determine the cluster contribution to the deflection of
rays originating from the quasar Q0957+561. The present mass estimates were
used to evaluate the convergence parameter kappa, the ratio of the local
surface mass density of the cluster to the critical surface mass density for
lensing. The convergence parameter, kappa, calculated in the vicinity of the
lensed images, was found to range between 0.07 and 0.21, depending on the
assumed cluster core radius and cluster extent. This range of uncertainty in
kappa does not include possible systematic errors arising from the estimation
of the cluster temperature through the use of the cluster
luminosity-temperature relation and the assumption of spherical symmetry of the
cluster gas. Applying this range of values of kappa to the lensing model of
Grogin & Narayan (1996) for Q0957+561 but not accounting for uncertainties in
that model yields a range of values for the Hubble constant:67<H_0<82 km s^-1
Mpc^-1, for a time delay of 1.1 years.Comment: Accepted for publication in ApJ, 25 pages, 9 figure
Constraints on H_0 from the Central Velocity Dispersions of Lens Galaxies
We employ Schwarzschild's method of orbit modeling to constrain the mass
profiles of the central lens galaxies in Q0957+561 and PG 1115+080. We combine
the measured central projected stellar velocity dispersions of these galaxies
with the self-similar radial profiles of the rms velocity and of the
Gauss-Hermite moment h_4 observed in nearby galaxies for 0 < R < 2 R_eff. For
Q0957+561, we find a 16% uncertainty in the galaxy mass, and formal 2-sigma
limits on the Hubble constant of H_0 = (61 +13/-15) km/s/Mpc. For PG 1115+080,
we find that none of the viable lens models can be ruled out, so that H_0 is
not yet strongly constrained by this system.Comment: Revised version accepted by ApJ: slightly modified results for both
lens sytems. 18 pages, with 7 inline Postscript figures, LaTeX, aaspp4.sty;
postscript paper w/figs (490 kb) also available at
http://cfa-www.harvard.edu/~romanow/orbit.post.v2.ps.g
Structure function of the UV variability of Q0957+561
We present a detailed structure function analysis of the UV variability of
Q0957+561. From new optical observations, we constructed normalized structure
functions of the quasar luminosity at restframe wavelengths of 2100 and 2600
\AA. Old optical records also allow the structure function to be obtained at
2100 \AA, but 10 years ago in the observer's frame. These three structure
functions are then compared to predictions of both simple and relatively
sophisticated (incorporating two independent variable components) Poissonian
models. We do not find clear evidence of a chromatic mechanism of variability.
From the recent data, 100-d time-symmetric and 170-d time-asymmetric flares
are produced at both restframe wavelengths. Taking into account measurements of
time delays and the existence of an EUV/radio jet, reverberation is probably
the main mechanism of variability. Thus, two types of EUV/X-ray fluctuations
would be generated within or close to the jet and later reprocessed by the disc
gas in the two emission rings. The 100-d time-symmetric shots are also
responsible for most of the 2100 \AA variability detected in the old
experiment. However, there is no evidence of asymmetric shots in the old UV
variability. If reverberation is the involved mechanism of variability, this
could mean an intermittent production of high-energy asymmetric fluctuations.
The old records are also consistent with the presence of very short-lifetime
(10 d) symmetric flares, which may represent additional evidence of time
evolution. We also discuss the quasar structure that emerges from the
variability scenario.Comment: 7 pages, 4 figures. Accepted for publication in A&A (based on the
brightness records at http://arxiv.org/abs/0810.4619
- …