211 research outputs found

    Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    Get PDF
    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems

    Donneés sur la faune pélagique vivant au large des côtes du Gabon, du Congo et de l'Angola (0-18° lat. S. et 5-12° long. E.) Tuniciers pélagiques: II. Pyrosomidae

    Get PDF
    Two species of Pyrosoma (P. atlanticum and P. aherniosum) have been recorded in the copious plankton material collected during several oceanographic cruises undertaken by the O.R.S.T.O.M. Center at Pointe- Noire, from 1960 to 1967, in the tropical Atlantic Ocean. The distribution of the colonies has been examined relatively to the local hydrological conditions

    Microscopic and Genetic Characterization of Bacterial Symbionts With Bioluminescent Potential in Pyrosoma atlanticum

    Get PDF
    The pelagic tunicate pyrosome, Pyrosoma atlanticum, is known for its brilliant bioluminescence, but the mechanism causing this bioluminescence has not been fully characterized. This study identifies the bacterial bioluminescent symbionts of P. atlanticum collected in the northern Gulf of Mexico using several methods such as light and electron microscopy, as well as molecular genetics. The bacteria are localized within the pyrosome light organs. Greater than 50% of the bacterial taxa present in the tunicate samples were the bioluminescent symbiotic bacteria Vibrionaceae as determined by utilizing current molecular genetics methodologies. A total of 396K MiSeq16S rRNA reads provided total pyrosome microbiome profiles to determine bacterial symbiont taxonomy. After comparing with the Silva rRNA database, a Photobacterium sp. r33-like bacterium (which we refer to as “Photobacterium Pa-1”) matched at 99% sequence identity as the most abundant bacteria within Pyrosoma atlanticum samples. Specifically designed 16S rRNA V4 probes for fluorescence in situ hybridization (FISH) verified the Photobacterium Pa-1 location as internally concentrated along the periphery of each dual pyrosome luminous organ. While searching for bacterial lux genes in two tunicate samples, we also serendipitously generated a draft tunicate mitochondrial genome that can be used for Pyrosoma atlanticum identification. Scanning (SEM) and transmission (TEM) electron microscopy confirmed the presence of intracellular rod-like bacteria in the light organs. This intracellular localization of bacteria may represent bacteriocyte formation reminiscent of other invertebrates

    The Role of Bacterial Symbionts and Bioluminescence in the Pyrosome, Pyrosoma atlanticum

    Get PDF
    The pelagic tunicate, Pyrosoma atlanticum, is known for its brilliant bioluminescence, but the mechanism causing this bioluminescence has not been fully characterized. This study identifies the bacterial bioluminescent symbionts of P. atlanticum collected in the northern Gulf of Mexico using various methods such as electron microscopy, light microscopy, and molecular genetics. The bacteria are localized within a specific pyrosome light organ. Bioluminescent symbiotic bacteria of Vibrionaceae composed \u3e50% of taxa in tunicate samples (n=13), which was shown by utilizing current molecular genetics methodologies. While searching for bacterial lux genes in 2 tunicate samples, we also serendipitously generated a draft tunicate mitochondrial genome which was used for P. atlanticum pyrosome identification. Furthermore, a total of 396K MiSeq16S rRNA reads provided pyrosome microbiome profiles to determine bacterial symbiont taxonomy. After comparing with the Silva rRNA database, a 99% sequence identity matched a Photobacterium sp. R33-like bacterium (referred to as Photobacterium-Pa1) as the most abundant bacteria within P. atlanticum samples. Specifically-designed 16S rRNA V4 probes for fluorescence in situ hybridization (FISH) verified the Photobacterium-Pa1 location around the periphery of each pyrosome luminous organ. Scanning and transmission electron microscopy (SEM, TEM respectively) confirmed a rod-like bacterial presence which also appears intracellular in the light organs. This intracellular bacterial localization may represent a bacteriocyte formation reminiscent of other invertebrates

    Trophic ecology of barrelfish (Hyperoglyphe perciformis) in oceanic waters of southeast Florida

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Bulletin of Marine Science 93 (2017): 987-996, doi:/10.5343/bms.2017.1003.Deep-water demersal fishes represent an understudied but ecologically important group of organisms. Select species of demersal fishes rely on pelagic prey items, representing a direct transport of surface carbon to greater depths. Barrelfish Hyperoglyphe perciformis (Mitchell, 1818), which inhabit deep slope waters, are a species that has been suggested to fill this role, as congeners consume primarily pelagic gelatinous zooplankton; however, there is a dearth of information on the trophic ecology of barrelfish. Stomach content and stable isotope analyses were conducted on barrelfish caught by recreational fishers off Miami, Florida to improve our understanding of the feeding of this species. Pyrosoma atlanticum (Péron, 1804), a pelagic, vertically migrating tunicate, represented 89% of the barrelfish diet by weight. Mesopelagic fish and shrimp contributed much smaller proportions. Standard ellipse areas corrected for sample size (SEAc) showed a substantially smaller isotopic niche width for barrelfish (0.606 ‰2) than dolphinfish (2.16 ‰2), king mackerel (3.04 ‰2), or wahoo (1.97 ‰2). Coupled with dependence on a singular prey item, the low SEAc of barrelfish suggests they occupy a limited trophic niche space. Overlap of barrelfish SEAc with dolphinfish (99.5% overlap) and king mackerel (100% overlap) indicate that the carbon sources as well as the number of trophic steps for barrelfish are similar to king mackerel and dolphinfish and are linked to surface waters. This trophic linkage suggests that barrelfish may play a role in carbon export and further study into their behavior and daily consumption rates is warranted for quantifying this role.Funding was provided to JJS from a Small Undergraduate Research Grant Experience (SURGE). JKL was supported as a Cooperative Institute for the North Atlantic Region fellow with funds from NOAA

    Chromosomes of Thaliaceans

    Get PDF
    SUMMARYThe chromosomes of six species of thaliaceans have been examined. The haploid number 11 was determined for Pyrosoma atlanticum and Doliolum denticolatum; the haploid number 12 was found for Pegea confoederata, Salpa fusiformis, Thalia democratica; the haploid number 13 was found in Salpa maxima.Salpa fusiformis and Thalia democratica are strikingly akin with respect to both number and morphology of diakinetic chromosomes whereas the other species of Salpida all possess distinguishing peculiarities. Pegea confoederata takes a place apart among the thaliaceans by virtue of the minute dimension of its chromosomes.The karyology of thaliaceans appears to be well differenciated from that of other tunicates and, although ascidians and thaliaceans are the most akin to each other, it is not possible to establish a meaningful probable relationship between their chromosomes

    Host-specific symbioses and the microbial prey of a pelagic tunicate (Pyrosoma atlanticum)

    Get PDF
    Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. This is the first study of the marine microorganisms associated with pyrosomes undertaken to improve the understanding of pyrosome biology, the impact of pyrosome blooms on marine microbial systems, and microbial symbioses with marine animals. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry. We found that pyrosomes harbor a microbiome distinct from the surrounding seawater, which was dominated by a few novel taxa. In addition to the dominant taxa, numerous more rare pyrosome-specific microbial taxa were recovered. Multiple bioluminescent taxa were present in pyrosomes, which may be a source of the iconic pyrosome luminescence. We also discovered free-living marine microorganisms in association with pyrosomes, suggesting that pyrosome feeding impacts all microbial size classes but preferentially removes larger eukaryotic taxa. This study demonstrates that microbial symbionts and microbial prey are central to pyrosome biology. In addition to pyrosome impacts on higher trophic level marine food webs, the work suggests that pyrosomes also alter marine food webs at the microbial level through feeding and seeding of the marine microbial communities with their symbionts. Future efforts to predict pyrosome blooms, and account for their ecosystem impacts, should consider pyrosome interactions with marine microbial communities

    Large Vertical Migrations of Pyrosoma atlanticum Play an Important Role in Active Carbon Transport

    Get PDF
    Pyrosomes are efficient grazers that can form dense aggregations. Their clearance rates are among the highest of any zooplankton grazer, and they can rapidly repackage what they consume into thousands of fecal pellets per hour. In recent years, pyrosome swarms have been found outside of their natural geographical range; however, environmental drivers that promote these swarms are still unknown. During the austral spring of 2017 a Pyrosoma atlanticum swarm was sampled in the Tasman Sea. Depth-stratified sampling during the day and night was used to examine the spatial and vertical distribution of P. atlanticum across three eddies. Respiration rate experiments were performed onboard to determine minimum feeding requirements for the pyrosome population. P. atlanticum was 2 orders of magnitude more abundant in the cold core eddy (CCE) compared to both warm core eddies, with maximum biomass of 360\ua0mg WW·m, most likely driven by high chlorophyll a concentrations. P. atlanticum exhibited diel vertical migration and migrated to a maximum depth strata of 800–1,000\ua0m. Active carbon transport in the CCE was 4 orders of magnitude higher than the warm core eddies. Fecal pellet production contributed to the majority (91%) of transport, and total downward carbon flux below the mixed layer was estimated at 11\ua0mg C·m·d. When abundant, P. atlanticum swarms have the potential to play a major role in active carbon transport, comparable to fluxes for zooplankton and micronekton communities
    • …
    corecore