3,303 research outputs found

    Requirement for sphingosine kinase 1 in mediating phase 1 of the hypotensive response to anandamide in the anaesthetised mouse

    Get PDF
    In the isolated rat carotid artery, the endocannabinoid anandamide induces endothelium-dependent relaxation via activation of the enzyme sphingosine kinase (SK). This generates sphingosine-1-phosphate (S1P) which can be released from the cell and activates S1P receptors on the endothelium. In anaesthetised mice, anandamide has a well-characterised triphasic effect on blood pressure but the contribution of SK and S1P receptors in mediating changes in blood pressure has never been studied. Therefore, we assessed this in the current study. The peak hypotensive response to 1 and 10 mg/kg anandamide was measured in control C57BL/6 mice and in mice pretreated with selective inhibitors of SK1 (BML-258, also known as SK1-I) or SK2 ((R)-FTY720 methylether (ROMe), a dual SK1/2 inhibitor (SKi) or an S1P1 receptor antagonist (W146). Vasodilator responses to S1P were also studied in isolated mouse aortic rings. The hypotensive response to anandamide was significantly attenuated by BML-258 but not by ROMe. Antagonising S1P1 receptors with W146 completely blocked the fall in systolic but not diastolic blood pressure in response to anandamide. S1P induced vasodilation in denuded aortic rings was blocked by W146 but caused no vasodilation in endothelium-intact rings. This study provides evidence that the SK1/S1P regulatory-axis is necessary for the rapid hypotension induced by anandamide. Generation of S1P in response to anandamide likely activates S1P1 to reduce total peripheral resistance and lower mean arterial pressure. These findings have important implications in our understanding of the hypotensive and cardiovascular actions of cannabinoids

    Hypoxia and lipid signaling

    Get PDF
    Sufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanism

    My journey in the discovery of nucleotide sugar transporters of the Golgi apparatus

    Get PDF
    Indexación: Scopus.I decided to do a second, 2-year postdoc in Phil Robbins’ lab at MIT. I applied for a 1-year extension of my Jane Coffin Childs Memorial Fund for Medical Research Fellowship and was advised by the director that while this was not unprecedented, I had to convince the Board of Scientific Advisors that I deserved this extra year more than new applicants who had never had a fellowship. I still wince at this, but as luck would have it, I had an ally in Joan Lusk. Joan, as mentioned previously, had been a former student in Kennedy’s lab and had moved on to a postdoc position in Salvador (Salva for short) Luria’s lab at MIT. Luria happened to be on the Board of the Jane Coffin Childs Memorial Fund for Medical Research, and Joan had told him about our cardiolipin synthase results. I was able to get a third year of fundingI had received money, for what amounted to approximately half an NIH grant, from the Jane Coffin Childs Memorial Fund for Medical Research to start up my independent laboratory. Salva wanted to know whether I would return the unspent money to the Fund if I received an NIH grant during the firstChemicals and CAS Registry Numbers: 4,4' diisothiocyanatostilbene 2,2' disulfonic acid, 53005-05-3; adenosine 3' phosphate 5' phosphosulfate, 482-67-7; adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; casein, 9000-71-9; edetic acid, 150-43-6, 60-00-4; fucose, 3615-37-0, 3713-31-3; fucosyltransferase, 56626-18-7; glycosyltransferase, 9033-07-2; guanosine diphosphate, 146-91-8; guanosine phosphate, 29593-02-0, 5550-12-9, 85-32-5; mannose, 31103-86-3, 3458-28-4; sphingosine, 123-78-4; Adenosine Triphosphate; Nucleotide Transport Proteins; Nucleotides; SugarsDefects in protein glycosylation can have a dramatic impact on eukaryotic cells and is associated with mental and developmental pathologies in humans. The studies outlined below illustrate how a basic biochemical problem in the mechanisms of protein glycosylation, specifically substrate transporters of nucleotide sugars, including ATP and 3-phosphoadenyl-5-phosphosulfate (PAPS), in the membrane of the Golgi apparatus and endoplasmic reticulum, expanded into diverse biological systems from mammals, including humans, to yeast, roundworms, and protozoa. Using these diverse model systems allowed my colleagues and me to answer fundamental biological questions that enabled us to formulate far-reaching hypotheses and expanded our knowledge of human diseases caused by malfunctions in the metabolic processes involved. © 2018 Hirschberg Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc.http://www.jbc.org/content/293/33/12653.ful

    Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase.

    Get PDF
    Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death

    DMS triggers apoptosis associated with the inhibition of SPHK1/NF-κB activation and increase in intracellular Ca2+ concentration in human cancer cells

    Get PDF
    N,N-Dimethyl-D-erythro-sphingosine (DMS) is known to induce cell apoptosis by specifically inhibiting sphingosine kinase 1 (SPHK1) and modulating the activity of cellular ceramide levels. The present study investigated the effects and the mechanism(s) of action of DMS in human lung cancer cells. We found that DMS dose-dependently suppressed cell proliferation and induced cell apoptosis in the human lung cancer cell line, A549. Mechanistically, treatment with DMS suppressed the activation of SPHK1 and nuclear factor-B (NF-B) p65, but increased intracellular [Ca2+]i in A549 cells. This study demonstrates that DMS triggers the apoptosis of human lung cancer cells through the modulation of SPHK1, NF-B and calcium signaling. These molecules may represent targets for anticancer drug design

    Essential requirement for sphingosine kinase activity in eNOS-dependent NO release and vasorelaxation

    Get PDF
    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts both as an extracellular ligand for endothelial differentiation gene receptor family and as an intracellular second messenger. Cellular levels of S1P are low and tightly regulated by sphingosine kinase (SPK). Recent studies have suggested that eNOS pathway may function as a downstream target for the biological effects of receptor-mediated S1P. Here we have studied the possible interplay between intracellular SIP generation and the eNOS activation pathway. S1P causes an endothelium-dependent vasorelaxation in rat aorta that is PTX sensitive, inhibited by L-NAME that involves eNOS phosphorylation, and mainly dependent on hsp90. When rat aorta rings were incubated with the SPK inhibitor DL-threo-dihydrosphingosine (DTD), there was a concentration-dependent reduction of Ach-induced vasorelaxation, implying a consistent contribution of sphingolipid pathway through intracellular sphingosine release and phosphorylation. Co-immunoprecipitation experiments consistently showed increased association of hsp90 with eNOS after exposure of cells to S1P as well to BK or calcium ionophore A-23187. Interestingly, as opposite to A-23187, BK and S1P effect were significantly inhibited by pretreatment with the SPK inhibitor DTD. In conclusion, our data demonstrate that an interplay exists among eNOS, hsp90, and intracellularly generated S1P where eNOS coupling to hsp90 is a major determinant for NO release as confirmed by our functional and molecular studies

    Dysregulated Choline, Methionine, and Aromatic Amino Acid Metabolism in Patients with Wilson Disease: Exploratory Metabolomic Profiling and Implications for Hepatic and Neurologic Phenotypes.

    Get PDF
    Wilson disease (WD) is a genetic copper overload condition characterized by hepatic and neuropsychiatric symptoms with a not well-understood pathogenesis. Dysregulated methionine cycle is reported in animal models of WD, though not verified in humans. Choline is essential for lipid and methionine metabolism. Defects in neurotransmitters as acetylcholine, and biogenic amines are reported in WD; however, less is known about their circulating precursors. We aimed to study choline, methionine, aromatic amino acids, and phospholipids in serum of WD subjects. Hydrophilic interaction chromatography-quadrupole time-of-flight mass spectrometry was employed to profile serum of WD subjects categorized as hepatic, neurologic, and pre-clinical. Hepatic transcript levels of genes related to choline and methionine metabolism were verified in the Jackson Laboratory toxic milk mouse model of WD (tx-j). Compared to healthy subjects, choline, methionine, ornithine, proline, phenylalanine, tyrosine, and histidine were significantly elevated in WD, with marked alterations in phosphatidylcholines and reductions in sphingosine-1-phosphate, sphingomyelins, and acylcarnitines. In tx-j mice, choline, methionine, and phosphatidylcholine were similarly dysregulated. Elevated choline is a hallmark dysregulation in WD interconnected with alterations in methionine and phospholipid metabolism, which are relevant to hepatic steatosis. The elevated phenylalanine, tyrosine, and histidine carry implications for neurologic manifestations and are worth further investigation

    Elevation of serum sphingosine-1-phosphate attenuates impaired cardiac function in experimental sepsis

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.This study was supported by the Federal Ministry of Education and Research (BMBF, Germany, FKZ 01EO1502). This work was supported, in part, by the William Harvey Research Foundation and forms part of the research themes contributing to the translational research portfolio of Barts and the London Cardiovascular Biomedical Research Unit that is supported and funded by the National Institute of Health Research. This work also contributes to the Organ Protection research theme of the Barts Centre for Trauma Sciences supported by the Barts and The London Charity (Award 753/1722). JP was supported by the German Research Foundation SFB 1039. AH was supported by the Swiss National Science Foundation
    • …
    corecore