7,415 research outputs found
Nanofibers in face masks and respirators to provide better protection
A facemask is a loose-fitting, disposable device that creates a physical barrier between the mouth and nose of the wearer and potential contaminants in the immediate environment. They are generally labelled as surgical, isolation, dental or medical procedure masks. On the other hand, respirators are personal air purifiers. They are designed to protect the wearer from inhaling dangerous substances such as toxic chemicals and infectious particles. Respirators are designed to help reduce the wearer's respiratory exposure to airborne contaminants such as particles that are small enough to be inhaled - particles less than 100 microns (μm) in size. A face masks or a respirator consist entirely or substantially of filter material or comprises a face piece in which the main filter(s) form an inseparable part of the device. Nanofibers could be the key elements for filter materials in face masks or respirators. They have a very high surface area per unit mass that enhances capture efficiency and other surface area-dependent phenomena that may be engineered into the fiber surfaces (such as catalysis or ion exchange). They could enhance filter performance for capture of naturally occurring nanoparticles such as viruses, as well as micron-sized particles such as bacteria or man-made particles such as soot from diesel exhaust. © Published under licence by IOP Publishing Ltd
Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency
To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets.
Since 2006, a rapid development has been achieved in a subject area, so called electro-spinning/netting (ESN), which comprises the conventional electrospinning process and a unique electro-netting process. Electro-netting overcomes the bottleneck problem of electrospinning technique and provides a versatile method for generating spider-web-like nano-nets with ultrafine fiber diameter less than 20 nm. Nano-nets, supported by the conventional electrospun nanofibers in the nano-fiber/nets (NFN) membranes, exhibit numerious attractive characteristics such as extremely small diameter, high porosity, and Steiner tree network geometry, which make NFN membranes optimal candidates for many significant applications. The progress made during the last few years in the field of ESN is highlighted in this review, with particular emphasis on results obtained in the author's research units. After a brief description of the development of the electrospinning and ESN techniques, several fundamental properties of NFN nanomaterials are addressed. Subsequently, the used polymers and the state-of-the-art strategies for the controllable fabrication of NFN membranes are highlighted in terms of the ESN process. Additionally, we highlight some potential applications associated with the remarkable features of NFN nanostructure. Our discussion is concluded with some personal perspectives on the future development in which this wonderful technique could be pursued
Electrospun nanofiber membranes as ultrathin flexible supercapacitors
A highly flexible electrochemical supercapacitor electrode was developed with a novel metal oxide-reinforced nanofiber electrode by utilizing a solution-based electrospinning technique. The facile fabrication steps involved the introduction of metal precursors into a polymeric solution, which was subjected to an in situ electrospinning process. The electrospun polymeric web with metallic ingredients was then subjected to an oxidative stabilization process that induced the formation of metal oxide nanoparticles within the polymer structure. Finally, the metal oxide nanoparticles incorporated with nanofibers were obtained using a carbonization process, thus converting the polymer backbones into a carbon-rich conductive nanofiber structure. The fabricated nanofibers were decorated and implanted with metal oxide nanoparticles that had a surface-decorated structure morphology due to the solubility of the precursors in the reaction solution. The electrochemical performance of the fabricated metal oxide reinforced with nanofiber electrodes was investigated as an electrochemical system, and the novel morphology significantly improved the specific capacitance compared to a pristine carbon nanofiber membrane. As a result of the uniform dispersion of metal oxide nanoparticles throughout the surface of the nanofibers, the overall capacitive behavior of the membrane was enhanced. Furthermore, a fabricated free-standing flexible device that utilized the optimized nanofiber electrode demonstrated high stability even after it was subjected to various bending operations and curvatures. These promising results showed the potential applications of these lightweight, conductive nanofiber electrodes in flexible and versatile electronic devices
Recommended from our members
Carbon Catcher Design Report
Overview. The design of the overall Carbon Catcher project can be separated into four distinct systems, each of which is assigned a specialized committee. The committee names and responsibilities are listed below:
Air Mover
The overall goal for the Air Mover committee is the design of the turbine assembly. As the overall goal of the project is to collect and separate carbon dioxide from the air, one of the most important parts is to actually get the air to pass through the carbon-catching
membrane. Passive air would not give a significant enough yield rate to make the carbon dioxide collection rate impactful, thus air must be sucked through a vacuum/turbine.
Membrane
The goal of Membrain is to create a membrane that can filter out CO2 through various methods. These methods are limited, due to there being such variety, to certain techniques and membrane material types that have been decided, prior, by the committee. Most membranes will be geared towards utilizing temperature and pressure along with gaseous speed and flow rate. In addition, examining certain treatments, such as regeneration of material, and replacements will be looked into as well, to see how it fares in sustainability.
Carbon Storer
The Carbon Storer committee will design a store and transport system for fluid CO2 after it is extracted from the atmosphere. Primary considerations include geological solutions, cost-effective materials, and analysis methods to improve overall capacity and efficiency. Additionally, the committee will select an environmentally and economically sustainable method of recycling the captured CO2.
PyControl
The PyControl committee will design a series of sensors and actuators, which will primarily support the sequestration and pipeline systems present in the Carbon Storer Committee and direct air capture system in Air Mover. The design can be broken into four control layers: Input/Output, Field Controllers, Data, and Supervisory.
Goal
The overarching goal of Carbon Catcher is to design a cost-effective, scalable atmospheric carbon dioxide removal system that is capable of being deployed in a variety of urban environments and may fit a variety of different customer requirements or requests
Force Spun PVDF and TPU Nanofiber Based Triboelectric Nanogenerator for Energy Harvesting and Sensor Application
Flexible and stretchable triboelectric nanogenerator (TENG) is the next generation potential candidate for wearable and portable electronics. In this study, we have demonstrated all nanofiber based TENG for energy harvesting and biomechanical sensing applications. The TENG was prepared by force spun polyvinylidene fluoride (PVDF) and gold (Au) sputtered thermoplastic polyurethane (TPU) nanofiber (NF) layer. The experimental characterization of the PVDF-TPU/Au NF-TENG revealed that surface modification by dispersed gold in TPU fiber membrane resulted the maximum open circuit voltage (254 V) and short circuit current (86 μA) output at 240 bpm (beats per minute) load frequency which was respectively 112% and 87% greater than bare PVDF-TPU NFs based TENG with the active contact surface area 1.25 × 1.0 in2. Furthermore, the hand tapped output of the TENG was able to light up 75 LED of 1.5 V each. The results of the resistive loads and capacitor tests exemplified that our proposed TENG offered a simple and high performance self-chargeable electronics. We have also demonstrated the possible chest, thigh, forearm, and bicep muscle sensor with different body movement, illustrated the possibility of flexible and cost-effective body motion sensors
Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications.
Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers\u27 morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors\u27 interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials
Development of Electrospun Polymer Nanofiber Membrane Based on PAN/PVDF as a Supercapacitor Separator
Among various types of energy storage, the supercapacitor is regarded as the most promising device due to its long cycling life, good cycling stability, and high power density. A supercapacitor is generally composed of electrodes, electrolytes, and a separator. The separator is one of the most important components, serving to prevent internal short circuits between the anode and the cathode. Herein, a nanostructured-based separator in a PAN/PVDF nanofiber scheme is introduced for improving the electrochemical performance of the supercapacitor. Briefly, the membranes were produced via the electrospinning technique. All of the raw materials were blended in various compositions of PVDF for optimization purposes. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were carried out to identify the microstructure of the nanofibers. The electrochemical properties of the membrane were measured using galvanostatic charge-discharge (GCD). Based on GCD, it was shown that the PAN/PVDF 20 wt% membrane exhibited the optimum gravimetric capacitance at 54.104 Fg-1 as evidenced by a high porosity percentage. Thus, the PAN/PVDF nanofiber has good potential as a separator for application in supercapacitors
- …