62 research outputs found

    Block copolymers based on poly(vinylidene fluoride)

    Get PDF
    In de afgelopen decennia zijn de hardware afmetingen van elektronische apparatuur voor draagbare smartphones, laptops en camera’s steeds verder afgenomen, terwijl hun prestaties enorm zijn toegenomen. Om deze trend in de toekomst voort te zetten is er een noodzaak om alternatieve materialen te ontwikkelen. In dit onderzoek wordt gebruik gemaakt van het bijzondere karakter van blokcopolymeren om nieuwe materialen te ontwikkelen voor dataopslagapparatuur die is ingebouwd in de elektronische apparatuur die wij dagelijks gebruiken. Blokcopolymeren zijn grote moleculen opgebouwd uit twee verschillende polymeerblokken. Aangezien beide blokken niet mengbaar zijn (net zoals water en olie), zullen ze fasescheiden op de nanoschaal in domeinen met een hoge mate van ordening. De nauwkeurige zelforganisatie van blokcopolymeren – toegepast in dit onderzoek – is een handige manier om elektronische apparaten op te bouwen, omdat de moleculen spontaan geordende structuren vormen en de afmetingen en functionaliteit gemakkelijk kunnen worden aangepast. In dit onderzoek hebben we blokcopolymeren gemaakt waarin één van de blokken ferro-elektrisch is. Ferro-elektrische materialen kunnen zich bevinden in verschillende gepolariseerde toestanden ("1" en "0") en de polarisatie kan worden omgeschakeld met een elektrisch veld, waardoor het mogelijk is om data op te slaan. We hebben onze blokcopolymeren gebruikt om geordende ferro-elektrische nanoschuimen te produceren. Daarna hebben we het polymeerschuim opgevuld met magnetische verbindingen, wat leidde tot een multiferroïsch materiaal samengesteld uit ferro-elektrische en ferromagnetische domeinen. Mogelijke koppeling tussen de elektrische en magnetische eigenschappen geeft de mogelijkheid om data elektrisch te schrijven en magnetisch uit te lezen

    Metal-Free Light-Catalyzed Atom Transfer Radical Polymerization for the Synthesis of Poly(vinylidene fluoride)-based Block Copolymers

    Get PDF
    This thesis explores the applicability of metal-free light-catalyzed atom transfer radical polymerization to the synthesis of PVDF-based block copolymers. In chapter two, a series of organic photoredox catalysts coupled with light of different wavelengths is explored. These photoredox catalysts work through either and oxidative quenching pathway or a reductive quenching pathway. They are tested under the same conditions to pick the more suitbale to the synthesis of the wanted PVDF-based block copolymers. In chapter three, a series of reaction parameters, namely the end-group on the PVDF macroinitiator, the concentration of the organic photoredox catalyst and the concentration of the monomer chosen for the second block are studied. In chapter four, the information gained in chapters two and three are applied for the synthesis of PS-b-PVDF-b-PS block copolymer. The synthesized block copolymers are then characterized at the solid state and after processing in thin films. In particular, the thermal properties are studied as well as the crystalline phase composition. The block copolymers are then characterized in solution to studied the morphology of the objects formed in mixtures of different solvents. In chapter five, the same principles are applied for the synthesis of P4VP-b-PVDF-b-P4VP block copolymer. The synthesized block copolymers are then characterized at the solid state and after processing in thin films. In particular, the thermal properties are studied as well as the crystalline phase composition. The block copolymers are then characterized in solution to studied the morphology of the objects formed in mixtures of different solvents

    Exploring the impact of process parameters on the metal-free light-catalyzed ATRP polymerization of PVDF-based block copolymers

    Get PDF
    The synthesis of well-defined poly(vinylidene fluoride) (PVDF)-based block copolymers has been an important topic in recent years to accurately modify its properties and to achieve high-quality composites. Atom transfer radical polymerization (ATRP) proved itself to be a viable technique for the controlled synthesis of PVDF-based block copolymers. Recently, organic photoredox catalysts (OPRCs) have been reported as effective photocatalysts in light-catalyzed ATRP. Here, we use three OPRs (perylene, 10-methylphenotiazine, 10-phenylphenotiazine) for the ATRP of methylmethacrylate using telechelic PVDF as macroinitiators. We explore the impact of three process parameters: the end group on the polymer chain, the concentration of MMA, and the concentration of the OPRC in solution. First, three different telechelic PVDF were tested under the same monomer and OPRC concentrations to select the best macroinitiator for this system. Then, the effects on the overall control and on the conversion when the concentration of monomer or OPRC is varied were evaluated.</p

    Exploring the impact of process parameters on the metal-free light-catalyzed ATRP polymerization of PVDF-based block copolymers

    Get PDF
    The synthesis of well-defined poly(vinylidene fluoride) (PVDF)-based block copolymers has been an important topic in recent years to accurately modify its properties and to achieve high-quality composites. Atom transfer radical polymerization (ATRP) proved itself to be a viable technique for the controlled synthesis of PVDF-based block copolymers. Recently, organic photoredox catalysts (OPRCs) have been reported as effective photocatalysts in light-catalyzed ATRP. Here, we use three OPRs (perylene, 10-methylphenotiazine, 10-phenylphenotiazine) for the ATRP of methylmethacrylate using telechelic PVDF as macroinitiators. We explore the impact of three process parameters: the end group on the polymer chain, the concentration of MMA, and the concentration of the OPRC in solution. First, three different telechelic PVDF were tested under the same monomer and OPRC concentrations to select the best macroinitiator for this system. Then, the effects on the overall control and on the conversion when the concentration of monomer or OPRC is varied were evaluated.</p

    Polyimides for piezoelectric materials, magnetoelectric nanocomposites and battery separators: synthesis and characterization

    Get PDF
    329 p.Se ha sintetizado una serie de poliimidas y copoliimidas que contienen grupos nitrilo en su estructura, y posteriormente han sido polarizadas por corona con objeto de dotarlas de comportamiento piezoeléctrico. Las condiciones de la polarización por corona han sido optimizadas para las muestras estudiadas, mostrando los coeficientes una buena estabilidad térmica y a lo largo del tiempo. Además, se ha estudiado la influencia en la piezoelectricidad de la unidad repetitiva con dos grupos nitrilo, observando que un incremento progresivo del contenido en el componente con dos grupos nitrilo (2CN) aumenta la respuesta piezoeléctrica. Los films poliméricos han demostrado alta estabilidad térmica mediante DSC y TGA, demostrando su uso a temperaturas superiores a 100ºC.Las propiedades dieléctricas de las muestras han sido determinadas mediante espectroscopia dieléctrica para comprender el comportamiento dieléctrico de los films de poliimida. Se ha analizado la contribución de los grupos nitrilo en las relajaciones dieléctricas y en los tipos de polarización que se ven implicados.El uso de poliimidas en nanocomposites magnetoeléctricos (ME) ha sido demostrado. Se ha medido el coeficiente magnetoeléctrico en un film de nanocomposite, preparado mediante un método de polimerización in-situ, usando nanopartículas esféricas de ferrita de cobalto como inclusión y una copoliimida amorfa, como matriz. Se han preparado diferentes fibras de poliimida mediante electrospinning (electrohilado), han sido caracterizadas y testadas como separadores para baterías de ion Litio

    Block Copolymers with Crystallizable Blocks: Synthesis, Self-Assembly and Applications

    Get PDF
    Block copolymers with crystallizable blocks have moved into the focus of current research, owing to their unique self-assembly behaviour and properties. New synthetic concepts give, for example, even access to tetrablock copolymers with four crystalline blocks, bio-based thermoplastic elastomers (e.g., based on ABA triblock copolymers with poly(L-lactide) (PLLA) hard segments), and allow new, exciting insights into the interplay of microphase separation and crystallization in controlling self-assembly in bulk (confined vs. break-out crystalliza­tion).Concerning self-assembly in solution, crystallization-driven self-assembly (CDSA) paved the way to a myriad of crystalline-core micellar structures and hierarchical super­structures that were not accessible before via self-assembly of fully amorphous block copolymers. This allows for the production of cylindrical micelles with defined lengths, length distribution, and corona chemistries (block type or patchy corona), as well as branched micelles and fascinating micellar superstructures (e.g., 2D lenticular platelets, scarf-shaped micelles, multidimensional micellar assemblies, and cross and “windmill”-like supermicelles).This Special Issue brings together new developments in the synthesis and self-assembly of block copolymers with crystallizable blocks and also addresses emerging applications for these exciting materials. It includes two reviews on CDSA and eight contributions spanning from membranes for gas separation to self-assembly in bulk and solution

    Mn2(co)10 Based Visible-light Photo Initiating Systems For Distinct Macromolecular Structures

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2017Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2017Işık, kimyasal tepkimelerin mekânsal ve zamansal kontrolüne imkan sağlayan dalga boyu, polarizasyon yönü ve yoğunluğu ayarlanabilmesi özellikleri sayesinde büyüleyici bir uyarıcıdır. Fotokimyasal reaksiyonlar, ayrışma, izomerleşme, elektron veya enerji transferi ve bağ oluşumu gibi birçok reaksiyonu vermek üzere, ışığın absorblanıp aktif türler yaratılmasını içerir. Bu reaksiyonlar organik kimya, moleküler biyoloji, elektronik gibi birçok alanda ayrıntılı olarak çalışılmıştır. Foto kimyasal başlatılmış reaksiyonlardan polimer kimyası alanında da faydalanılmaktadır. Özellikle, monomerlerin ışık etkisiyle polimerlere dönüştürüldüğü fotobaşlatılmış polimerizasyon tekniği diğer polimerizasyon tekniklerine göre birçok avantaja sahiptir. Isısal polimerizasyon yerine fotobaşlatılmış polimerizasyon tekniklerinin kullanımının %30 luk bir enerji tasarrufu sağlayacağı tahmin edilmektedir. Bu sebeple, yüzey kaplaması, mürekkep, yapıştırıcı, mikroelektronik, baskı levhaları ve üç boyutlu görüntüleme ile mikro-üretim gibi birçok klasik yöntemin temelini oluşturmaktadır. Ayrıca bu tür foto sistemler için birçok fotobaşlatıcı sistem geliştirilmiştir. Organik halojenler ile birlikte kullanılan Mn2(CO)10 sistemi farklı mimarideki polimerlerin sentezi için ideal bir sistem olarak ön plana çıkmaktadır. Görünür bölge ışığını absorplaması ve birçok farklı monomerdeki yüksek çözünürlük değerleri bu sistemin ilave avantajları olarak görülebilir. Mn2(CO)10 kimyasının, serbest radikal polimerzasyonu, katyonik polimerizasyon, mekanistik dönüşüm, aşı kopolimerizasyonu, dejeneratif iyot transfer polimerizasyonu, teleklik ve çok dallanmış polimer sentezi gibi birçok uygulaması literatürde mevcuttur. Bu tezde, tüm bu avantajlar dikkate alınarak, farklı mimarideki makromoleküler yapıların sentezi için Mn2(CO)10 temelli yeni fotokimyasal yöntemlerin geliştirilmesi üzerine odaklanılmıştır. Bu kapsamda tezin ilk bölümünde, polyolefin aşı kopolimerlerinin (Halka açılması metathesis polimerizasyonu (ROMP), hidrobromlama ve görünür bölge ışığıyla başlatışmış serbest radikal polimerizasyonu yöntemlerinin birleşimi ile sentezlenmesi incelenmiştir. İlk olarak cis-siklookten bir zincir transfer ajanının varlığında ROMP yöntemi ile polimerleştirilip, brom fonksiyonlu polietilen vermek üzere hidrobromlanmıştır. Elde edilen bu polimerin Mn2(CO)10 varlığında görünür bölgede aydınlatılması, PE-g-PtBA aşı kopolimerini vermek üzere, tBA monomerinin serbest radikal polimerizasyonu başlatmıştır. Mn2(CO)10 miktarının ve aydınlatma süresinin aşı yoğunluğu ve etkinliği üzerindeki etkisi incelenmiştir. Daha sonra PE-g-PtBA polimerinin tBA grupları akrilik asit fonksiyonu vermek üzere hidroliz edilip, hidrofilik PE-g-PAA aşı kopolimeri elde edilmiştir. İkinci kısımda ise, Mn2(CO)10 kullanımı içeren yeni bir Atom Transfer Radikal Polimerizasyonu yöntemi geliştirilmiştir. Polimerizasyonlar Mn2(CO)10/alkil halojenür sisteminin, ppm mertebesindeki bakır katalizörü varlığında, güneş veya görünür bölge ışığı altında aydınlatılması ile gerçekleştirilmiştir. Sistemde fotokimyasal olarak oluşturulan •Mn(CO)5 radikalleri, alkil halojenürden halojen koparıp karbon merkezli radikaller oluşturmasının yanısıra aktivatör olarak görev yapan CuIBr ün CuIIBr2 den doğrudan indirgenmesini sağlamaktadır. Ayrıca aynı yaklaşım kullanılarak, ticari polivinil klorür (PVC) nin aşı kopolimerlerinin sentezlenebileceğide gösterirlmiştir. Son olarak, vinil eterlerin yaşayan katyonik polimerizasyonu için yeni bir foto başlatıcı sistemi incelenmiştir. Bu bağlamda, alkil bromürün, Mn2(CO)10 varlığında aydınlatılması karbon merkezli radikal oluşumuna sebebiyet vermiştir. Daha sonra, bu radikaller vinil monomeri eklemek üzere difenilyodonyum iyonu yardımıyla ilgili katyonlara okside edilmiştir. Oluşan bu katyonlar vinil monomer eklenmesinin hemen ardından brom anyonu tarafından deaktive edilerek, halojen fonksiyonu ile sonlanır. Poli(vinil eter) zinciri ise benzer şekilde fotobaşlatılmış radikal oksidasyon/ekleme/deaktivasyon yöntemi ile kontrollü bir şekilde büyütülmüştür. Sistemin yaşayan polimerizasyon doğası, kinetik çalışmalar ve blok kopolimerizasyon çalışmaları ile incelenmiştir.Light is a particularly fascinating stimulus because it can be precisely modulated in terms of wavelength, polarization direction and intensity, allowing spatial and temporal of the chemical reactions. Photochemical reactions involve the absorption of light to create an excited species that may undergo a number of different reactions such as dissociation, isomerization, abstraction, electron or energy transfer, and bond formation. These reactions have been studied quite extensively in various fields including organic chemistry, molecular biology and electronics etc. Photoinduced chemical reactions can advantageously be utilized in the field of polymer chemistry. Among them, photoinitiated polymerization which is a process that transforms monomers into polymers under light irradiation, has many advantages over other polymerization methods. It is fast, uses little energy, and readily occurs at room temperature. It has been estimated that energy costs can be reduced 30% by switching from thermal polymerization to photoinitiated polymerization. Therefore, it has been the basis of numerous conventional applications in surface coatings, printing inks, adhesives, microelectronics, printing plates and three dimensional imaging and micro-fabrication processes. Additionally, there is a huge number of photoinitiators for such photo-induced systems. Among them, dimanganese decacarbonyl (Mn2(CO)10) in conjunction with organic halides appears as an ideal photoinitiating system for the preparation of polymers with various topologies. Additional attractive features of the transition metal carbonyl compound include efficient light absorption in the visible region and solubility in a wide variety of reactive monomers. Many different applications of Mn2(CO)10 chemistry including initiation of free radical polymerization, promotion of cationic polymerization, mechanistic transformation, graft copolymerization, iodine degenerative transfer polymerization, preparation of telechelics and hyperbranched polymers have been reported and reviewed. Taking account of the unique advantages of Mn2(CO)10 photochemistry, in this thesis, we focused on the development of new Mn2(CO)10 based photochemical approaches for the synthesis of macromolecular structures with various architectures. In the first part of the thesis, polyolefin graft copolymers were prepared by combining ring-opening metathesis polymerization (ROMP), hydrobromination, and visible light-induced free radical polymerization. First, cis-cyclooctene (COE) was polymerized via ROMP in the presence of a chain transfer agent and quantitatively hydrobrominated to give bromo functional polyethylene (PE-Br). Subsequent irradiation of PE-Br in the visible range using dimanganese decacarbonyl (Mn2(CO)10) initiated free radical polymerization of tert-butyl acrylate (tBA) resulting in the formation of polyethylene-graft-poly(tert-butylacrylate) (PE-g-PtBA). The effect of Mn2(CO)10 concentration and irradiation time on the grafting density and efficiency was evaluated. Then, the tBA moieties of PE-g-PtBA were hydrolyzed into acrylic acid functionalities by acidolysis to obtain hydrophilic polyethylene-graft-poly(acrylic acid) (PE-g-PAA). In the second part, a new photoredox catalyst system for Atom Transfer Radical Polymerization (ATRP) is developed on the basis of visible light photocatalysis using Mn2(CO)10 that initiates and controls the polymerization at ambient temperature. The polymerization was performed by Mn2(CO)10/alkyl halide system with visible- or sunlight in the presence of parts per million (ppm) copper catalysts. The photogenerated •Mn(CO)5 radicals are not only able to abstract halogen atoms from alkyl halides to generate carbon centered radicals but also reduce the copper(II) bromide (CuIIBr2) to copper(I) bromide (CuIBr) directly, which was used as activator in the ATRP of vinyl monomers such as methyl methacrylate, methyl acrylate and styrene. The method was also used to synthesize graft copolymers from commercially available poly(vinyl chloride) without additional modification. Finally, a new photoinitiating system for living cationic polymerization of vinyl ethers is reported. In the current approach, visible-light irradiation of Mn2(CO)10 in the presence of an alkyl bromide results in the formation of carbon-centered radicals. The photochemically generated radicals were then oxidized by diphenyliodonium ions to the corresponding cations. These cations can add vinyl ether monomers, which are then rapidly deactivated by the bromide anions to give α-halide functional end groups. Poly(vinyl ether) chains are then grown through successive photoinduced radical oxidation/addition/deactivation (PROAD) in a controlled manner. The living nature of the system is evaluated through kinetics studies and block copolymer formation.DoktoraPh.D

    Development and Characterization of Polymer-based Magnetoelectric Nanofibers

    Get PDF
    With the rapid development of bionics, where biological systems meet electronics, there is an interest in polymer-based electrode systems that are soft, flexible, easily processed and fabricated. In this research area, magnetoelectric (ME) composites bring new and exciting opportunities, including contactless or “wireless” electrical stimulation, less-invasive integration in the form of dispersible, injectable nanoelectrodes, and applications as biodegradable sensors and bioenergy harvesters in the biomedical field. When ME composites are exposed to a magnetic field, a magnetostrictive (MS) component transfers strain to a piezoelectric (PE) component that generates an output voltage. In doing so, ME composites have the ability to enable magnetic-to-electrical conversion and thus can be utilized to power devices or electrically stimulate tissues or cells from a remote magnetic stimulus. To date, ceramic materials have mostly been applied in nanostructured ME composites, however, these may become fragile and cause deleterious reactions at the interface regions, leading to low electrical resistivity and high dielectric losses and ultimately low output voltage. To overcome these shortcomings, polymer-based ME composites offer new solutions to develop softer, contactless electrodes, without electrical connections, for easier and unique fabrication approaches (e.g. incorporation into soft gels). Their strain-mediated ME effect in large scale devices has been thoroughly studied both experimentally and theoretically. Polymer-based ME composites have almost exclusively used the PE polymer, poly (vinylidene fluoride) (PVDF), due to its high PE coefficient and as such developments in exploring other types of PE polymers have not been forthcoming. For example, other PE polymers such as poly (vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) and poly (lactic acid) (PLA) have yet to be investigated though have the potential to bring added-value and function to polymer-based ME composites. Compared to PVDF and its copolymer P(VDF-TrFE), the piezoelectricity of another copolymer, P(VDF-HFP), is less-well understood. As a biocompatible polymer, PLA has been extensively investigated for applications in drug delivery and tissue engineering. Instead of being used only as a biodegradable and bioactive thermoplastic material, PLA is promising as a PE polymer, which has potential to mimic PE functions of tissues. Thus, in addition to PVDF, the thesis investigates the PE properties of P(VDF-HFP) and PLA and aims to develop ME composite nanofibers based on these polymers

    β–Phasiges PVDF–Blockcopolymer: Herkunft, Beeinflussung und Quantifizierung

    Get PDF
    Das Kristallisationsverhalten von Polyvinylidenfluorid–Blockcopolymeren (PVDF–BC) aus der Reaktionsmischung wurde untersucht. Ziel war es, einen großen Anteil β–phasiges PVDF zu erhalten, da dieses piezoelektrische Eigenschaften aufweist. Die β–Phase ist eine von fünf kristallinen Phasen des PVDFs. Diverse (Meth–)Acrylate wurden für die BC–Synthese in einem Photoreaktor verwendet. Unter anderem konnte gezeigt werden, dass die Bildung von Homopolymer durch das eingesetzte Comonomer vernachlässigt werden kann. Wichtig für ein definiertes PVDF–BC ist eine möglichst hohe Iodendgruppenfunktionalität FI,tot. in der radiklaischen Polymerisation. Mittels GPC, NMR, DSC, IR–PAS und XRD wurden die BC– Produkte analysiert und der Umsatz des PVDFs zum BC bestätigt. Durch IR–PAS und XRD wurde die Phasenkomposition des PVDFs betrachtet. Als Faktor zur Ausbildung hoher Anteile der piezoelektrischen Phase hat sich die Aufarbeitung der Reaktionslösung erwiesen. Die Anwesenheit von Additiven im Antisolvens (MeOH), mit dessen Hilfe das PVDF–BC aus der Lösung durch Auskristallisieren/–fällen erhalten wird, zeigt eine dirigierende Wirkung auf die Phasenkomposition. Es wurden sowohl mehrere in MeOH lösliche Salze (CaCl2, KI, KCl, KBr, NaCl und LiCl) als auch Wasser und KOH bzw. konz. HCl als Zusätze in Kristallisationsexperimenten untersucht. Je höher die Konzentration der gelösten Ionen war, desto größer war der Anteil der β–Phase im PVDF–BC. Im Moment des Mischens der Reaktionslösung mit dem Antisolvens wirken kurzzeitig an der Grenzfläche die gelösten Ionen mit ihrer Ladung auf die partiell geladenen Segmenten des PVDFs. So kann z. B. ein negativ geladenes Ion mit den partiell positiv geladenen CH2–Einheiten des PVDFs wechselwirken. Dieser Einfluss wird durch die Polarität der Lösungsmittel (DMAc und MeOH) und eventuell anwesendem Wasser unterstützt. Die all–trans–Konformation wird vorgegeben und fungiert als Kristallisationskeim beim Ausfällen des PVDF–Blockcopolymers. Zur Quantifizierung des effektiven β–Phasengehalts wurde eine neue Größe eingeführt: wβ, Massenprozent β–Phase. Dieses berücksichtigt, neben dessen Gehalt F(β) im kristallinen Anteil, die Kristallinität im PVDF als auch dessen Verhältnis zu einer Nicht–PVDF– Komponente. Im Folgenden wurde durch eine variierte Aufarbeitungsmethode der kristalline Anteil im PVDF–BC erhöht, um somit den Anteil der effektiven β–Phase zu steigern. Eine Zugabe des Fällmediums (MeOH plus konz. HCl) zur Reaktionsmischung unter Rühren und Temperieren auf 50 °C bis zur ersten Trübung und langsamen Abkühlen über Nacht auf RT zeigte die besten Ergebnisse mit einer typischen PVDF/PMMA–BC–RL aus einer Photoreaktorsynthese. Ein Gehalt wβ von ca. 30 w/w–% ist somit erreichbar, was den Verlust an Kristallinität durch die Ausbildung eines Blockcopolymers wettmacht. Durch weitere Optimierung der Ausfällmischung konnte wβ durch den Zusatz von konz. HCl und zusätzlichem Wasser in MeOH für ein typisches PVDF/PMMA–BC auf 40 w/w–% gesteigert werden und liegt somit doppelt so hoch wie im verwendeten Ausgangs–PVDF für die BC–Synthese.The crystallization behavior of polyvinylidene fluoride block copolymers (PVDF–BC) from the reaction mixture was investigated. The objective was to obtain a large fraction of β–phase containing PVDF, since it exhibits piezoelectric properties. The β–phase is one of five crystalline phases of PVDF. Various (meth)acrylates were used for BC synthesis in a photoreactor. Among others, it was shown that the formation of homopolymer by the comonomer used can be neglected. It is important for a defined PVDF–BC to have a high end group functionality FI,tot. of the PVDF starting material in the radical polymerization. By GPC, NMR, DSC, IR–PAS and XRD, the BC products were analyzed and the conversion of PVDF to BC was confirmed. By IR–PAS and XRD, the phase composition of the PVDF was evaluated. The workup of the reaction solution was found to be a factor in the formation of high proportions of the piezoelectric phase. The presence of additives in the antisolvent (MeOH), with the help of which the PVDF-BC is obtained from the solution by crystallization/precipitation, shows a directing effect on the phase composition. Several salts soluble in MeOH (CaCl2, KI, KCl, KBr, NaCl and LiCl) as well as water and KOH or conc. HCl as additives were investigated in crystallization experiments. The higher the concentration of the dissolved ions was, the greater was the proportion of the β–phase in the PVDF–BC. At the moment of mixing the reaction solution with the antisolvent, the dissolved ions act briefly at the interface with their charge on the partially charged segments of the PVDF. For example, a negatively charged ion can interact with the partially positively charged CH2 units of the PVDF. This influence is supported by the polarity of the solvents (DMAc and MeOH) and any water present. The all-trans conformation is prescribed and acts as a crystallization nucleus upon precipitation of the PVDF block copolymer. To quantify the effective β–phase content, a new parameter was introduced: wβ, mass percent of β–phase. This takes into account, besides the content F(β) in the crystalline fraction, the crystallinity in the PVDF as well as its ratio to a non-PVDF component. In the following, the crystalline fraction in the PVDF-BC was increased by a varied workup method in order to increase the fraction of the effective β–phase. Adding the precipitation medium (MeOH plus conc. HCl) to the reaction mixture while stirring and tempering to 50 °C until the first turbidity appears and slowly cooling overnight to RT showed the best results with a typical PVDF/PMMA-BC RM from a photoreactor synthesis. A content of about 30 w/w-% is achievable in this way, which compensates for the loss of crystallinity due to the formation of a block copolymer. By further optimizing the precipitation mixture, the addition of conc. HCl and additional water in MeOH for a typical PVDF/PMMA-BC wβ could be increased to 40 w/w-%, which is twice as high as in the starting PVDF used for BC synthesis
    corecore