445,186 research outputs found

    DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in Arabidopsis

    Get PDF
    RNA-directed DNA methylation (RdDM) and histone H3K9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a luciferase-based DNA methylation reporter, LUCL, we found that camptothecin, a compound with anti- cancer properties that targets DNA topoisomerase 1α (TOP1α) was able to de-repress LUCL by reducing its DNA methylation and H3K9me2 levels. Further studies with Arabidopsis top1α mutants showed that TOP1α silences endogenous RdDM loci by facilitating the production of Pol V-dependent long non-coding RNAs, AGONAUTE4 recruitment and H3K9me2 deposition at TEs and repeats. This study assigned a new role in epigenetic silencing to an enzyme that affects DNA topology.Fil: Dinh, Thanh Theresa. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados Unidos. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology. ChemGen IGERT program; Estados UnidosFil: Gao, Lei. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Liu, Xigang . University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Li, Dongming. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados Unidos. Lanzhou University. School of Life Sciences Plant Biology Laboratory; ChinaFil: Li, Shengben. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Zhao, Yuanyuan. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: O'leary, Michael. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Le, Brandon. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Schmitz, Robert J.. The Salk Institute for Biological Studies. Plant Biology Laboratory; Estados UnidosFil: Manavella, Pablo Andrés. Max Planck Institute for Developmental Biology. Department of Molecular Biology; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Agrobiotecnologia del Litoral; ArgentinaFil: Li, Shaofang. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados UnidosFil: Weigel, Detlef. Max Planck Institute for Developmental Biology. Department of Molecular Biology; AlemaniaFil: Pontes, Olga. University of New Mexico. Department of Biology; Estados UnidosFil: Ecker, Joseph R.. The Salk Institute for Biological Studies. Howard Hughes Medical Institute; Estados Unidos. The Salk Institute for Biological Studies. Plant Biology Laboratory; Estados UnidosFil: Chen, Xuemei. University of California Riverside. Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences; Estados Unidos. University of California Riverside. Howard Hughes Medical Institute, ; Estados Unido

    The Draft Genome of the Invasive Walking Stick, Medauroidea extradendata, Reveals Extensive Lineage-Specific Gene Family Expansions of Cell Wall Degrading Enzymes in Phasmatodea.

    Get PDF
    Plant cell wall components are the most abundant macromolecules on Earth. The study of the breakdown of these molecules is thus a central question in biology. Surprisingly, plant cell wall breakdown by herbivores is relatively poorly understood, as nearly all early work focused on the mechanisms used by symbiotic microbes to breakdown plant cell walls in insects such as termites. Recently, however, it has been shown that many organisms make endogenous cellulases. Insects, and other arthropods, in particular have been shown to express a variety of plant cell wall degrading enzymes in many gene families with the ability to break down all the major components of the plant cell wall. Here we report the genome of a walking stick, Medauroidea extradentata, an obligate herbivore that makes uses of endogenously produced plant cell wall degrading enzymes. We present a draft of the 3.3Gbp genome along with an official gene set that contains a diversity of plant cell wall degrading enzymes. We show that at least one of the major families of plant cell wall degrading enzymes, the pectinases, have undergone a striking lineage-specific gene family expansion in the Phasmatodea. This genome will be a useful resource for comparative evolutionary studies with herbivores in many other clades and will help elucidate the mechanisms by which metazoans breakdown plant cell wall components

    Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis

    Get PDF
    Perception of the plant steroid hormone brassinolide (BL) by the membrane-associated receptor kinase BRI1 triggers the dephosphorylation and accumulation in the nucleus of the transcriptional modulators BES1 and BZR1. We identified bsu1-1D as a dominant suppressor of bri1 in A abidopsis. BSU1 encodes a nuclear-localized serine-threonine protein phosphatase with an N-terminal Kelch-repeat domain, and is preferentially expressed in elongating cells. BSU1 is able to modulate the phosphorylation state of BES1, counter acting the action of the glycogen synthase kinase-3 BIN2, and leading to inc eased steady-state levels of dephosphorylated BES1. BSU1 belongs to a small gene family; loss-of-function analyses unravel the extent of functional overlap among members of the family and confirm the role of these phosphatases in the control of cell elongation by BL. Our data indicate that BES1 is subject to antagonistic phosphorylation and dephosphorylation reactions in the nucleus, which fine-tune the amplitude of the response to BL.Fil: Mora Garcia, Santiago. Salk Institute. Plant Biology Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Howard Hughes Medical Institute; Estados UnidosFil: Vert, Gregory. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Yin, Yanhai. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Caño Delgado, Ana. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Cheong, Hyeonsook. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Chory, Joanne. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados Unido

    Gravitational Biology Facility on Space Station: Meeting the needs of space biology

    Get PDF
    The Gravitational Biology Facility (GBF) is a set of generic laboratory equipment needed to conduct research on Space Station Freedom (SSF), focusing on Space Biology Program science (Cell and Developmental Biology and Plant Biology). The GBF will be functional from the earliest utilization flights through the permanent manned phase. Gravitational biology research will also make use of other Life Sciences equipment on the space station as well as existing equipment developed for the space shuttle. The facility equipment will be developed based on requirements derived from experiments proposed by the scientific community to address critical questions in the Space Biology Program. This requires that the facility have the ability to house a wide variety of species, various methods of observation, and numerous methods of sample collection, preservation, and storage. The selection of the equipment will be done by the members of a scientific working group (5 members representing cell biology, 6 developmental biology, and 6 plant biology) who also provide requirements to design engineers to ensure that the equipment will meet scientific needs. All equipment will undergo extensive ground based experimental validation studies by various investigators addressing a variety of experimental questions. Equipment will be designed to be adaptable to other space platforms. The theme of the Gravitational Biology Facility effort is to provide optimal and reliable equipment to answer the critical questions in Space Biology as to the effects of gravity on living systems

    BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis

    Get PDF
    Plant steroid hormones, brassinosteroids (BRs), are perceived by the plasma membrane-localized leucine-rich-repeat-receptor kinase BRI1. Based on sequence similarity, we have identified three members of the BRI1 family, named BRL1, BRL2 and BRL3. BRL1 and BRL3, but not BRL2, encode functional BR receptors that bind brassinolide, the most active BR, with high affinity. In agreement, only BRL1 and BRL3 can rescue bri1 mutants when expressed under the control of the BRI1 promoter. While BRI1 is ubiquitously expressed in growing cells, the expression of BRL1 and BRL3 is restricted to non-overlapping subsets of vascular cells. Loss-of-function of brl1 causes abnormal phloem:xylem differentiation ratios and enhances the vascular defects of a weak bri1 mutant. bri1 brl1 brl3 triple mutants enhance bri1 dwarfism and also exhibit abnormal vascular differentiation. Thus, Arabidopsis contains a small number of BR receptors that have specific functions in cell growth and vascular differentiation.Fil: Caño Delgado, Ana. Salk Institute. Plant Biology Laboratory; Estados Unidos. Howard Hughes Medical Institute; Estados UnidosFil: Yin, Yanhai. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Yu, Cong. University of Michigan; Estados UnidosFil: Vafeados, Dionne. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados UnidosFil: Mora Garcia, Santiago. Howard Hughes Medical Institute; Estados Unidos. Salk Institute. Plant Biology Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Cheng, Jin Chen. University of Michigan; Estados UnidosFil: Nam, Kyoung Hee. University of Michigan; Estados UnidosFil: Li, Jianming. University of Michigan; Estados UnidosFil: Chory, Joanne. Salk Institute. Plant Biology Laboratory; Estados Unidos. Howard Hughes Medical Institute; Estados Unido

    Techniques for RNA in vivo imaging in plants

    Get PDF
    Since the discovery of small RNAs and RNA silencing, RNA biology has taken a centre stage in cell and developmental biology. Small RNAs, but also mRNAs and other types of cellular and viral RNAs are processed at specific subcellular localizations. To fully understand cellular RNA metabolism and the various processes influenced byit, techniques are required that permit the sequence-specific tracking of RNAs in living cells. A variety of methods for RNA visualization have been developed since the 1990s, but plant cells pose particular challenges and not all approaches are applicable to them. On the other hand, plant RNA metabolism is particularly diverse and RNAs are even transported between cells, so RNA imaging can potentially provide many valuable insights into plant function at the cellular and tissue level. This Short Review briefly introduces the currently available techniques for plant RNA in vivo imaging and discusses their suitability for different biological questions.PostprintPeer reviewe

    Plant cell packs: a scalable platform for recombinant protein production and metabolic engineering

    Get PDF
    Industrial plant biotechnology applications include the production of sustainable fuels, complex metabolites and recombinant proteins, but process development can be impaired by a lack of reliable and scalable screening methods. Here, we describe a rapid and versatile expression system which involves the infusion of Agrobacterium tumefaciens into three‐dimensional, porous plant cell aggregates deprived of cultivation medium, which we have termed plant cell packs (PCPs). This approach is compatible with different plant species such as Nicotiana tabacum BY2, Nicotiana benthamiana or Daucus carota and 10‐times more effective than transient expression in liquid plant cell culture. We found that the expression of several proteins was similar in PCPs and intact plants, for example, 47 and 55 mg/kg for antibody 2G12 expressed in BY2 PCPs and N. tabacum plants respectively. Additionally, the expression of specific enzymes can either increase the content of natural plant metabolites or be used to synthesize novel small molecules in the PCPs. The PCP method is currently scalable from a microtiter plate format suitable for high‐throughput screening to 150‐mL columns suitable for initial product preparation. It therefore combined the speed of transient expression in plants with the throughput of microbial screening systems. Plant cell packs therefore provide a convenient new platform for synthetic biology approaches, metabolic engineering and conventional recombinant protein expression techniques that require the multiplex analysis of several dozen up to hundreds of constructs for efficient product and process development

    Plant cell biology and development 9.

    Get PDF

    Plant cell biology and development 14.

    Get PDF
    corecore