17,549 research outputs found

    Shoot and plantlet regeneration from meristems of Dioscorea rotundata Poir and Dioscorea alata L.

    Get PDF
    In vitro culture media capable of regenerating moderate to high shoots and/or plantlets from meristems of two yam species - Dioscorea rotundata and Dioscorea alata within comparable duration of 10 weeks as commonly obtained in other monocots and root and tuber crops were investigated. The study comprised 125 phytohormone combinations investigated in three factorial experiments each consisting of an auxin (NAA) and a cytokinin (BAP or kinetin), or two cytokinins only. The frequency of direct plantlet regeneration, though significantly (P < 0.05) higher for D. alata than for D. rotundata, was low and ranged from 0 to 10% at 3 weeks after culture (WAC) and 0 to 35% at 8 WAC. At 8 WAC, shoot regeneration of 42-75% was obtained in D. rotundata in MS medium supplemented with 0.1 M NAA + 0.20 M BAP, and shoot + plantlet regeneration of 60-82% obtained in media containing 0.05 M + 0.20 M BAP or 0.46 M BAP + 0.50 M kinetin in D. alata. Both shoot induction and plantlet regeneration were species-dependent. Induced shoots were successfully rooted in MS medium within 3 to 4 weeks, bringing time taken for plantlet regeneration to 11 to 12 weeks. Regenerants were morphologically similar to the mother plants. Results of the present study will facilitate regeneration of plantlets via meristem in D. rotundata and D. alata

    An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots.

    Get PDF
    The phytohormones jasmonate, gibberellin, salicylate, and ethylene regulate an interconnected reprogramming network integrating root development with plant responses against microbes. The establishment of mutualistic ectomycorrhizal symbiosis requires the suppression of plant defense responses against fungi as well as the modification of root architecture and cortical cell wall properties. Here, we investigated the contribution of phytohormones and their crosstalk to the ontogenesis of ectomycorrhizae (ECM) between grey poplar (Populus tremula x alba) roots and the fungus Laccaria bicolor. To obtain the hormonal blueprint of developing ECM, we quantified the concentrations of jasmonates, gibberellins, and salicylate via liquid chromatography-tandem mass spectrometry. Subsequently, we assessed root architecture, mycorrhizal morphology, and gene expression levels (RNA sequencing) in phytohormone-treated poplar lateral roots in the presence or absence of L. bicolor. Salicylic acid accumulated in mid-stage ECM. Exogenous phytohormone treatment affected the fungal colonization rate and/or frequency of Hartig net formation. Colonized lateral roots displayed diminished responsiveness to jasmonate but regulated some genes, implicated in defense and cell wall remodelling, that were specifically differentially expressed after jasmonate treatment. Responses to salicylate, gibberellin, and ethylene were enhanced in ECM. The dynamics of phytohormone accumulation and response suggest that jasmonate, gibberellin, salicylate, and ethylene signalling play multifaceted roles in poplar L. bicolor ectomycorrhizal development

    Effects of elevated [CO2 ] on maize defence against mycotoxigenic Fusarium verticillioides.

    Get PDF
    Maize is by quantity the most important C4 cereal crop; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2 ] is a driving force behind the warmer temperatures and drought, which aggravate fungal disease and mycotoxin accumulation, our understanding of how elevated [CO2 ] will effect maize defences against such pathogens is limited. Here we report that elevated [CO2 ] increases maize susceptibility to Fusarium verticillioides proliferation, while mycotoxin levels are unaltered. Fumonisin production is not proportional to the increase in F. verticillioides biomass, and the amount of fumonisin produced per unit pathogen is reduced at elevated [CO2 ]. Following F. verticillioides stalk inoculation, the accumulation of sugars, free fatty acids, lipoxygenase (LOX) transcripts, phytohormones and downstream phytoalexins is dampened in maize grown at elevated [CO2 ]. The attenuation of maize 13-LOXs and jasmonic acid production correlates with reduced terpenoid phytoalexins and increased susceptibility. Furthermore, the attenuated induction of 9-LOXs, which have been suggested to stimulate mycotoxin biosynthesis, is consistent with reduced fumonisin per unit fungal biomass at elevated [CO2 ]. Our findings suggest that elevated [CO2 ] will compromise maize LOX-dependent signalling, which will influence the interactions between maize and mycotoxigenic fungi

    Synthesis, secretion, and perception of abscisic acid regulates stress responses in \u3ci\u3eChlorella sorokiniana\u3c/i\u3e

    Get PDF
    Abscisic acid (ABA) is a phytohormone that has been extensively characterized in higher plants for its roles in seed and bud dormancy, leaf abscission, and stress responses. Genomic studies have identified orthologs for ABA-related genes throughout the Viridiplantae, including in unicellular algae; however, the role of ABA in algal physiology has not been characterized, and the existence of such a role has been a matter of dispute. In this study, we demonstrate that ABA is involved in regulating algal stress responses. Chlorella sorokiniana strain UTEX 1230 contains genes orthologous to those of higher plants which are essential for ABA biosynthesis, sensing, and degradation. RNAseq-based transcriptomic studies reveal that treatment with ABA induces dramatic changes in gene expression profiles, including the induction of a subset of genes involved in DNA replication and repair, a phenomenon which has been demonstrated in higher plants. Pretreatment of C. sorokiniana cultures with ABA exerts a protective effect on cell viability in response to ultraviolet radiation. Additionally, C. sorokiniana produces and secretes biologically relevant amounts of both ABA and the oxylipin 12-oxo-phytodienoic acid (OPDA) into the growth medium in response to abiotic stressors. Taken together, these phenomena suggest that ABA signaling evolved as an intercellular stress response signaling molecule in eukaryotic microalgae prior to the evolution of multicellularity and colonization of land

    Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules

    Get PDF
    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.Nadiatul A. Mohd-Radzman was supported by ANU International PhD Scholarship. This work was supported by an Australian Research Council grant to Michael A. Djordjevic and Nijat Imin (DP140103714)

    Studies on saponin production in tropical medicinal plants Maesa argentea and Maesa lanceolata

    Get PDF
    The continuous need for new compounds with important medicinal activities has lead to the identification and characterization of various plant-derived natural products. As a part of this program, we studied the saponin production from two tropical medicinal plants Maesa argentea and M. lanceolata and evaluated several treatments to enhance their saponin production. In this experiment, we present the analyses of saponin production from greenhouse grown plants by means of TLC and HPLC-MS. We observed that the content of saponin from these plants varied depending on organ and physiological age of the plants. In addition, the impact of elicitors on saponin accumulation on in vitro grown plants was analyzed using TLC. The production of saponin was very stable and not affected by treatment with methyl jasmonate, and salicylic acid. In conclusion, Maesa saponins are constitutively produced in plants and the level of these compounds in plants is mainly affected by the developmental or physiological stage
    • …
    corecore