634,581 research outputs found

    Nuclear Physics for Cultural Heritage

    Get PDF
    Nuclear physics applications in medicine and energy are well known and widely reported. Less well known are the many important nuclear and related techniques used for the study, characterization, assessment and preservation of cultural heritage. There has been enormous progress in this field in recent years and the current review aims to provide the public with a popular and accessible account of this work. The Nuclear Physics Division of the EPS represents scientists from all branches of nuclear physics across Europe. One of its aims is the dissemination of knowledge about nuclear physics and its applications. This review is led by Division board member Anna Mackovå, Head of the Tandetron Laboratory at the Nuclear Physics Institute of the Czech Academy of Sciences, and the review committee includes four other members of the nuclear physics board interested in this area: Faiçal Azaiez, Johan Nyberg, Eli Piasetzky and Douglas MacGregor. To create a truly authoritative account, the Scientific Editors have invited contributions from leading experts across Europe, and this publication is the combined result of their work. The review is extensively illustrated with important discoveries and examples from archaeology, pre-history, history, geography, culture, religion and curation, which underline the breadth and importance of this field. The large number of groups and laboratories working in the study and preservation of cultural heritage across Europe indicate the enormous effort and importance attached by society to this activity

    Conference Summary of QNP2018

    Full text link
    This report is the summary of the Eighth International Conference on Quarks and Nuclear Physics (QNP2018). Hadron and nuclear physics is the field to investigate high-density quantum many-body systems bound by strong interactions. It is intended to clarify matter generation of universe and properties of quark-hadron many-body systems. The QNP is an international conference which covers a wide range of hadron and nuclear physics, including quark and gluon structure of hadrons, hadron spectroscopy, hadron interactions and nuclear structure, hot and cold dense matter, and experimental facilities. First, I introduce the current status of the hadron and nuclear physics field related to this conference. Next, the organization of the conference is explained, and a brief overview of major recent developments is discussed by selecting topics from discussions at the plenary sessions. They include rapidly-developing field of gravitational waves and nuclear physics, hadron interactions and nuclear structure with strangeness, lattice QCD, hadron spectroscopy, nucleon structure, heavy-ion physics, hadrons in nuclear medium, and experimental facilities of EIC, GSI-FAIR, JLab, J-PARC, Super-KEKB, and others. Nuclear physics is at a fortunate time to push various projects at these facilities. However, we should note that the projects need to be developed together with related studies in other fields such as gravitational physics, astrophysics, condensed-matter physics, particle physics, and fundamental quantum physics.Comment: 10 pages, LaTeX, 1 style file, 3 figure files, Proceedings of Eighth International Conference on Quarks and Nuclear Physics (QNP2018), November 13-17, 2018, Tsukuba, Japa

    Holographic Nuclear Physics

    Full text link
    We analyze the phases of the Sakai-Sugimoto model at finite temperature and baryon chemical potential. Baryonic matter is represented either by 4-branes in the 8-branes or by strings stretched from the 8-branes to the horizon. We find the explicit configurations and use them to determine the phase diagram and equation of state of the model. The 4-brane configuration (nuclear matter) is always preferred to the string configuration (quark matter), and the latter is also unstable to density fluctuations. In the deconfined phase the phase diagram has three regions corresponding to the vacuum, quark-gluon plasma, and nuclear matter, with a first-order and a second-order phase transition separating the phases. We find that for a large baryon number density, and at low temperatures, the dominant phase has broken chiral symmetry. This is in qualitative agreement with studies of QCD at high density.Comment: 27 pages, 26 figures. v2: Added a comment about higher derivative corrections to the DBI action in the smeared instanton in section 2.1. v3: References added, version published in JHEP. v4: misprints correcte

    The Structure of Light Nuclei and Its Effect on Precise Atomic Measurements

    Get PDF
    This review consists of three parts: (a) what every atomic physicist needs to know about the physics of light nuclei; (b) what nuclear physicists can do for atomic physics; (c) what atomic physicists can do for nuclear physics. A brief qualitative overview of the nuclear force and calculational techniques for light nuclei will be presented, with an emphasis on debunking myths and on recent progress in the field. Nuclear quantities that affect precise atomic measurements will be discussed, together with their current theoretical and experimental status. The final topic will be a discussion of those atomic measurements that would be useful to nuclear physics, and nuclear calculations that would improve our understanding of existing atomic data.Comment: 24 pages, latex, 6 figures, svmult.cls required -- index at back To appear in "Precision Physics of Simple Atomic Systems," ed. by S. Karshenboim, (Springer-Verlag, Berlin, in preparation

    Modern topics in theoretical nuclear physics

    Full text link
    Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this brief, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention to the strong connections to many-body atomic and condensed matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde
    • 

    corecore