634,581 research outputs found
Nuclear Physics for Cultural Heritage
Nuclear physics applications in medicine and energy are well known and widely reported. Less well known are the many important nuclear and related techniques used for the study, characterization, assessment and preservation of cultural heritage. There has been enormous progress in this field in recent years and the current review aims to provide the public with a popular and accessible account of this work.
The Nuclear Physics Division of the EPS represents scientists from all branches of nuclear physics across Europe. One of its aims is the dissemination of knowledge about nuclear physics and its applications. This review is led by Division board member Anna Mackovå, Head of the Tandetron Laboratory at the Nuclear Physics Institute of the Czech Academy of Sciences, and the review committee includes four other members of the nuclear physics board interested in this area: Faiçal Azaiez, Johan Nyberg, Eli Piasetzky and Douglas MacGregor. To create a truly authoritative account, the Scientific Editors have invited contributions from leading experts across Europe, and this publication is the combined result of their work.
The review is extensively illustrated with important discoveries and examples from archaeology, pre-history, history, geography, culture, religion and curation, which underline the breadth and importance of this field. The large number of groups and laboratories working in the study and preservation of cultural heritage across Europe indicate the enormous effort and importance attached by society to this activity
Conference Summary of QNP2018
This report is the summary of the Eighth International Conference on Quarks
and Nuclear Physics (QNP2018). Hadron and nuclear physics is the field to
investigate high-density quantum many-body systems bound by strong
interactions. It is intended to clarify matter generation of universe and
properties of quark-hadron many-body systems. The QNP is an international
conference which covers a wide range of hadron and nuclear physics, including
quark and gluon structure of hadrons, hadron spectroscopy, hadron interactions
and nuclear structure, hot and cold dense matter, and experimental facilities.
First, I introduce the current status of the hadron and nuclear physics field
related to this conference. Next, the organization of the conference is
explained, and a brief overview of major recent developments is discussed by
selecting topics from discussions at the plenary sessions. They include
rapidly-developing field of gravitational waves and nuclear physics, hadron
interactions and nuclear structure with strangeness, lattice QCD, hadron
spectroscopy, nucleon structure, heavy-ion physics, hadrons in nuclear medium,
and experimental facilities of EIC, GSI-FAIR, JLab, J-PARC, Super-KEKB, and
others. Nuclear physics is at a fortunate time to push various projects at
these facilities. However, we should note that the projects need to be
developed together with related studies in other fields such as gravitational
physics, astrophysics, condensed-matter physics, particle physics, and
fundamental quantum physics.Comment: 10 pages, LaTeX, 1 style file, 3 figure files, Proceedings of Eighth
International Conference on Quarks and Nuclear Physics (QNP2018), November
13-17, 2018, Tsukuba, Japa
Holographic Nuclear Physics
We analyze the phases of the Sakai-Sugimoto model at finite temperature and
baryon chemical potential. Baryonic matter is represented either by 4-branes in
the 8-branes or by strings stretched from the 8-branes to the horizon. We find
the explicit configurations and use them to determine the phase diagram and
equation of state of the model. The 4-brane configuration (nuclear matter) is
always preferred to the string configuration (quark matter), and the latter is
also unstable to density fluctuations. In the deconfined phase the phase
diagram has three regions corresponding to the vacuum, quark-gluon plasma, and
nuclear matter, with a first-order and a second-order phase transition
separating the phases. We find that for a large baryon number density, and at
low temperatures, the dominant phase has broken chiral symmetry. This is in
qualitative agreement with studies of QCD at high density.Comment: 27 pages, 26 figures. v2: Added a comment about higher derivative
corrections to the DBI action in the smeared instanton in section 2.1. v3:
References added, version published in JHEP. v4: misprints correcte
The Structure of Light Nuclei and Its Effect on Precise Atomic Measurements
This review consists of three parts: (a) what every atomic physicist needs to
know about the physics of light nuclei; (b) what nuclear physicists can do for
atomic physics; (c) what atomic physicists can do for nuclear physics. A brief
qualitative overview of the nuclear force and calculational techniques for
light nuclei will be presented, with an emphasis on debunking myths and on
recent progress in the field. Nuclear quantities that affect precise atomic
measurements will be discussed, together with their current theoretical and
experimental status. The final topic will be a discussion of those atomic
measurements that would be useful to nuclear physics, and nuclear calculations
that would improve our understanding of existing atomic data.Comment: 24 pages, latex, 6 figures, svmult.cls required -- index at back To
appear in "Precision Physics of Simple Atomic Systems," ed. by S.
Karshenboim, (Springer-Verlag, Berlin, in preparation
Modern topics in theoretical nuclear physics
Over the past five years there have been profound advances in nuclear physics
based on effective field theory and the renormalization group. In this brief,
we summarize these advances and discuss how they impact our understanding of
nuclear systems and experiments that seek to unravel their unknowns. We discuss
future opportunities and focus on modern topics in low-energy nuclear physics,
with special attention to the strong connections to many-body atomic and
condensed matter physics, as well as to astrophysics. This makes it an exciting
era for nuclear physics.Comment: 8 pages, 1 figure, prepared for the Nuclear Physics Town Hall Meeting
at TRIUMF, Sept. 9-10, 2005, comments welcome, references adde
- âŠ