3,097 research outputs found

    Vertical Transmission of a Phylogenetically Complex Microbial Consortium in the Viviparous Sponge \u3cem\u3eIrcinia Felix\u3c/em\u3e

    Get PDF
    Many marine demosponges contain large amounts of phylogenetically complex yet highly sponge-specific microbial consortia within the mesohyl matrix, but little is known about how these microorganisms are acquired by their hosts. Settlement experiments were performed with the viviparous Caribbean demosponge Ircinia felix to investigate the role of larvae in the vertical transmission of the sponge-associated microbial community. Inspections by electron microscopy revealed large amounts of morphologically diverse microorganisms in the center of I. felix larvae, while the outer rim appeared to be devoid of microorganisms. In juveniles, microorganisms were found between densely packed sponge cells. Denaturing gradient gel electrophoresis (DGGE) was performed to compare the bacterial community profiles of adults, larvae, and juvenile sponges. Adults and larvae were highly similar in DGGE band numbers and banding patterns. Larvae released by the same adult individual contained highly similar DGGE banding patterns, whereas larvae released by different adult individuals showed slightly different DGGE banding patterns. Over 200 bands were excised, sequenced, and phylogenetically analyzed. The bacterial diversity of adult I. felix and its larvae was comparably high, while juveniles showed reduced diversity. In total, 13 vertically transmitted sequence clusters, hereafter termed “IF clusters,” that contained sequences from both the adult sponge and offspring (larvae and/or juveniles) were found. The IF clusters belonged to at least four different eubacterial phyla and one possibly novel eubacterial lineage. In summary, it could be shown that in I. felix, vertical transmission of microorganisms through the larvae is an important mechanism for the establishment of the sponge-microbe association

    Microbial communities and bioactive compounds in marine sponges of the family Irciniidae-a review

    Get PDF
    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species-the vast majority of which are difficult to cultivate-and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont) of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.Portuguese Foundation [PTDC/MAR/101431/2008, PTDC/BIA-MIC/3865/2012]; European Regional Development Fund (ERDF) through the Operational Competitiveness Programme (COMPETE); national funds through FCT (Foundation for Science and Technology) [PEst-C/MAR/LA0015/2011]; FCT [SFRH/BD/60873/2009]info:eu-repo/semantics/publishedVersio

    Some Like It Fat: Comparative Ultrastructure of the Embryo in Two Demosponges of the Genus Mycale (Order Poecilosclerida) from Antarctica and the Caribbean

    Get PDF
    0000-0002-7993-1523© 2015 Riesgo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License [4.0], which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    New species from the deep Pacific suggest that carnivorous sponges date back to the Early Jurassic

    Get PDF
    Some deep-sea poecilosclerid sponges (Porifera) have developed a carnivorous feeding habit that is very surprising in sponges^1^. As shown by the typical morphology of their spicules, they most probably evolved from "normal sponges" under the difficult conditions of a deep-sea environment. Such evolution, which implies the loss of the diagnostic character of the phylum Porifera, i.e. a filter feeding habit through a complex aquiferous system, should be of great interest in the understanding of the origin of metazoans. Some scenarios, based on the hypothesis of the paraphyly of Porifera, allege that metazoans could derive from a sponge filter-feeding body plan. A difficulty, however, is to imagine the transition from a sponge grade of organization to other organization plans^2^. Carnivorous sponges demonstrate that a functional, non filter-feeding animal may derive from a conventional sponge body plan, albeit nothing is known of the age of this evolution. Here we report that newly discovered species of _Chondrocladia_ from the deep Pacific display special spicules that were previously recorded only as isolated spicules from sediment dating back to the Early Jurassic and Miocene periods. This suggests that the evolution of carnivorous sponges from filter-feeding poecilosclerid demosponges could date back at least from the Early Mesozoic

    ROV's Video Recordings as a Tool to Estimate Variation in Megabenthic Epifauna Diversity and Community Composition in the Guaymas Basin

    Get PDF
    Patterns in benthic megafauna diversity in littoral and intertidal zones in the Gulf of California have been associated with both habitat heterogeneity and substrate type. Current knowledge of invertebrate communities in hard bottom habitats at depths > 200 m in the Gulf is poor due to the methodological limitations inherent in sampling deep habitats. Using video imagery of benthic habitats coupled with environmental data from the Remotely Operated Vehicle Doc Ricketts, we documented variation in the diversity and community composition of the benthos from 849 to 990 m depth in the NW limit of the Guaymas Basin, in relation to dissolved oxygen and substrate characteristics. This depth range overlaps an oxygen minimum zone where oxygen drops to levels < 0.5 ml L-1 and strong gradients in a narrow depth range occur. Dissolved oxygen varied along our benthic survey from 0.200 to 0.135 ml L-1. We observed high taxonomic richness across an area of rocky outcrops through the lower transition zone. This megafaunal pattern differs from reports from other oxygen minimum zones characterized by a great abundance of a few species. Taxonomic richness diminished at depths with reduced dissolved oxygen in the lower boundary of the oxygen minimum zone with increasing soft sediment cover. We found that rocky outcrops and structure-forming organisms such as corals, sponges, and oyster aggregations supported a higher diversity (H' = 0.8) than soft sediment (H' = 0.7) as have been observed in other habitats such as seamounts. Environmental variables that explained most of the megafaunal variation were substrate type (18.4%), depth (1.14%) and temperature (0.9%). Salinity (0.45%) and dissolved oxygen (0.3%) were less important factors to explain the megafaunal composition variance. Substrate type played a key role in the diversity and composition of benthic megafauna. These results broaden our understanding concerning the potential roles of substrate characteristics in the community composition of the deep-sea benthic megafaunal assemblages in the Gulf of California and oxygen minimum zones in general

    Recovery at Morvin: SERPENT final report

    Get PDF
    Recovery from disturbance is poorly understood in deep water, but the extent of anthropogenic impacts is becoming increasingly well documented. We used Remotely Operated Vehicles (ROV) to visually assess the change in benthic habitat after exploratory hydrocarbon drilling disturbance around the Morvin well located at 380m depth in the Norwegian Sea.An ROV, launched directly from the rig drilling the well in 2006 was used to carry out video transects around the well before drilling and immediately after. On a return to the site three years after disturbance a larger survey was conducted with a ship-launched ROV in 2009. Transects were repeated at the disturbed area and random background transects were taken. Visible drill cuttings were mapped for each survey, and positions and counts of epibenthic invertebrate megafauna were determined, revealing a fauna dominated by Cnidaria (45% of total observations) and Porifera (33%).Immediately after disturbance a visible cuttings pile extended to over 100m from the well and megafaunal density was significantly reduced (0.07 individuals m-2) in comparison to pre-drill data (0.23 ind. m-2). Three years later the visible extent of the cuttings pile had reduced in size, reaching 60m from the well and considerably less in some headings. In comparison to background transects (0.21 ind. m-2), megafaunal density was significantly reduced on the remaining cuttings (0.04m-2), but beyond the visible disturbance there was no significant difference (0.15m-2). The investigation at this site shows a return to background densities of megafaunal organisms over a large extent of the area previously disturbed. However a central area, where the initial cuttings pile was deepest, demonstrated reduced sessile megafaunal density which persisted three years after disturbance. Elevated Barium concentration and reduced sediment grain size suggests persistence of disturbance beyond the remaining visibly impacted area which may result in changes to the infaunal communities undetectable by ROV video survey

    Expression of secondary metabolites by the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola

    Get PDF
    Aplysina aerophoba and Aplysina cavernicola are two sibling sponge species common in Mediterranean sea. External and internal morphology is almost identical in the two species. So, according to a lack of traditional taxonomic character (spicule comparison), taxonomists have longly debated if the two taxa, showing different ecological requirements but identical morphology, should be regarded as ecotypes or distinct species. Now, molecular phylogeny has brought response to this question: A. aerophoba and A. cavernicola are lately distinct species. The two species, also called bacteriosponges because of their dense community of symbiotic bacteria that can amount up to 40 % of their dry weight, can contain high amounts of secondary metabolites: brominated alkaloids derived from tyrosine (up to 13% of dry weight). As part of a program in chemical ecology where the main goal is to better understand the processes controlling the chemical diversity and its variation in marine invertebrates, (1) we finalized the methodology to quantify the major secondary metabolites produced by the two Mediterranean Aplysina species, (2) we identified chemotaxonomic markers in order to clearly discriminate the two sibling species, (3) we explored whether variation, in quality and quantity, of secondary metabolites expression occurs at different biogeographic scales, and (4) we investigated the role of microbial symbionts in bromotyrosine alkaloids biosynthesis

    The early expansion and evolutionary dynamics of POU class genes.

    Get PDF
    The POU genes represent a diverse class of animal-specific transcription factors that play important roles in neurogenesis, pluripotency, and cell-type specification. Although previous attempts have been made to reconstruct the evolution of the POU class, these studies have been limited by a small number of representative taxa, and a lack of sequences from basally branching organisms. In this study, we performed comparative analyses on available genomes and sequences recovered through "gene fishing" to better resolve the topology of the POU gene tree. We then used ancestral state reconstruction to map the most likely changes in amino acid evolution for the conserved domains. Our work suggests that four of the six POU families evolved before the last common ancestor of living animals-doubling previous estimates-and were followed by extensive clade-specific gene loss. Amino acid changes are distributed unequally across the gene tree, consistent with a neofunctionalization model of protein evolution. We consider our results in the context of early animal evolution, and the role of POU5 genes in maintaining stem cell pluripotency

    DNA barcoding of sponges (Phylum Porifera) in South Africa

    Get PDF
    Abstract : South Africa is renowned for its biological diversity and is a hotspot for marine invertebrates (Griffith et al., 2010), including sponges (Porifera). Despite their pivotal role for the functionality of the marine ecosystem, a reliable estimate of the species richness of sponges in South Africa is difficult. Using morphological characters for species identification has its limitations: it is hindered by the paucity and plasticity of morphological characters (Blanquer & Uriz 2007, Sperling et al., 2011) which may result in numerous species being morphologically indistinguishable, i.e. “cryptic” species. The sponge fauna of South Africa is also understudied, although this issue has begun to be addressed, with more than 40 new species described from this region over the last 10 years. It is likely that the current estimate of sponge biodiversity nonetheless remains a considerable underestimate, and numerous suspected new species remain to be described (Samaai, pers. comm.). Over the last five years, increased efforts were placed on documenting South African biodiversity, with sponges as one of the focus groups. The present study is part of this initiative, and constitutes the first genetic study on South African sponges aimed at complementing morphological data to help resolve sponge taxonomy. The results indicate that South African sponges are not as widespread as previously thought, but comprise cryptic and genetically distinct evolutionary lineages. Importantly, the results show that sponges identified from South Africa as southern hemisphere are representatives of supposedly cosmopolitan species that have been misidentified. Moreover, some species assumed to be widespread in southern Africa actually turned out to be subdivided into regional evolutionary lineages with distinct distribution ranges. In some cases the molecular data corroborated the morphological species identification, whereas in other instances the combined approach revealed the presence of species complexes. This study represents a first step in constructing a reference library for South African sponges and to advance our understanding of the diversity, biogeography and evolutionary adaptability of South African sponges.M.Sc. (Zoology
    • …
    corecore