209,185 research outputs found
The Boston University Photonics Center annual report 2013-2014
This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013â2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the centerâs faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Centerâthe centerpiece of our translational biophotonics programâcontinues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base
The Boston University Photonics Center annual report 2014-2015
This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the centerâs faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundationâ sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New Yorkâbased consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center
The Boston University Photonics Center annual report 2013-2014
This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2013-2014 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This annual report summarizes activities of the Boston University Photonics Center in the 2013â2014 academic year.This has been a good year for the Photonics Center. In the following pages, you will see that the centerâs faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted 20M in research funding for the University, are indicative of the breadth of Photonics Center research interests: from fundamental modeling of optoelectronic materials to practical development of cancer diagnostics, from exciting new discoveries in optogenetics for understanding brain function to the achievement of world-record resolution in semiconductor circuit microscopy. Our community welcomed an auspicious cohort of new faculty members, including a newly hired assistant professor and a newly hired professor (and Chair of the Mechanical Engineering Department). The Industry/University Cooperative Research Centerâthe centerpiece of our translational biophotonics programâcontinues to focus on advancing the health care and medical device industries, and has entered its fourth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base
The Boston University Photonics Center annual report 2014-2015
This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the centerâs faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundationâ sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New Yorkâbased consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center
The Boston University Photonics Center annual report 2016-2017
This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2016-2017 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has undoubtedly been the Photonics Centerâs best year since I became Director 10 years ago. In the following pages, you will see highlights of the Centerâs activities in the past year, including more than 100 notable scholarly publications in the leading journals in our field, and the attraction of more than 22 million dollars in new research grants/contracts. Last year I had the honor to lead an international search for the first recipient of the Moustakas Endowed Professorship in Optics and Photonics, in collaboration with ECE Department Chair Clem Karl. This professorship honors the Centerâs most impactful scholar and one of the Centerâs founding visionaries, Professor Theodore Moustakas. We are delighted to haveawarded this professorship to Professor Ji-Xin Cheng, who joined our faculty this year.The past year also marked the launch of Boston Universityâs Neurophotonics Center, which will be allied closely with the Photonics Center. Leading that Center will be a distinguished new faculty member, Professor David Boas. David and I are together leading a new Neurophotonics NSF Research Traineeship Program that will provide $3M to promote graduate traineeships in this emerging new field. We had a busy summer hosting NSF Sites for Research Experiences for Undergraduates, Research Experiences for Teachers, and the BU Student Satellite Program. As a community, we emphasized the theme of âOptics of Cancer Imagingâ at our annual symposium, hosted by Darren Roblyer. We entered a five-year second phase of NSF funding in our Industry/University Collaborative Research Center on Biophotonic Sensors and Systems, which has become the centerpiece of our translational biophotonics program. That I/UCRC continues to focus on advancing the health care and medical device industries
The Boston University Photonics Center annual report 2015-2016
This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2015-2016 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that this year the Centerâs faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.9M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and cooperated in supporting National Science Foundation sponsored Sites for Research Experiences for Undergraduates and for Research Experiences for Teachers. As a community, we emphasized the theme of âFrontiers in Plasmonics as Enabling Science in Photonics and Beyondâ at our annual symposium, hosted by Bjoern Reinhard. We continued to support the National Photonics Initiative, and contributed as a cooperating site in the American Institute for Manufacturing Integrated Photonics (AIM Photonics) which began this year as a new photonics-themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Development of Less Toxic Treatment Strategies for Metastatic and Drug Resistant Breast Cancer Using Noninvasive Optical Monitoring led by Professor Darren Roblyer, continued support of our NIH-sponsored, Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Cathy Klapperich, and an exciting confluence of new grant awards in the area of Neurophotonics led by Professors Christopher Gabel, Timothy Gardner, Xue Han, Jerome Mertz, Siddharth Ramachandran, Jason Ritt, and John White. Neurophotonics is fast becoming a leading area of strength of the Photonics Center. The Industry/University Collaborative Research Center, which has become the centerpiece of our translational biophotonics program, continues to focus onadvancing the health care and medical device industries, and has entered its sixth year of operation with a strong record of achievement and with the support of an enthusiastic industrial membership base
The operational characteristics and potential applications of a low voltage EMCCD in a CMOS process
The Electron Multiplying Test Chip 1 (EMTC1) was developed with the aim of creating a device which could produce superior Electron Multiplication (EM) gain at a greatly reduced voltage. An EM gain exceeding 3% per stage has been recorded for a relatively low voltage (~13.0V) from two recently developed pixel structures. An electro-optical characterisation of the EMTC1 is presented focusing on charge transfer via experimental and simulation results aiming to provide insight into the transfer and multiplication process. The Charge Transfer Inefficiency (CTI) is analysed with the aim of providing a greater understanding of the charge transfer process. Light starved applications such as Earth observation and automated inspection are known to benefit from Time Delay Integration (TDI) and electron multiplication. Though traditionally implemented in CCDs, implementing TDI in CMOS technology can lead to an increase of functionality, higher readout speeds and reduced noise. This paper presents a discussion of the implication of these results on the potential applications of this sensor
Topological Photonics
Topological photonics is a rapidly emerging field of research in which
geometrical and topological ideas are exploited to design and control the
behavior of light. Drawing inspiration from the discovery of the quantum Hall
effects and topological insulators in condensed matter, recent advances have
shown how to engineer analogous effects also for photons, leading to remarkable
phenomena such as the robust unidirectional propagation of light, which hold
great promise for applications. Thanks to the flexibility and diversity of
photonics systems, this field is also opening up new opportunities to realize
exotic topological models and to probe and exploit topological effects in new
ways. This article reviews experimental and theoretical developments in
topological photonics across a wide range of experimental platforms, including
photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon
photonics, and circuit QED. A discussion of how changing the dimensionality and
symmetries of photonics systems has allowed for the realization of different
topological phases is offered, and progress in understanding the interplay of
topology with non-Hermitian effects, such as dissipation, is reviewed. As an
exciting perspective, topological photonics can be combined with optical
nonlinearities, leading toward new collective phenomena and novel strongly
correlated states of light, such as an analog of the fractional quantum Hall
effect.Comment: 87 pages, 30 figures, published versio
Chirality in non-Hermitian photonics
Chirality is ubiquitous from microscopic to macroscopic phenomena in physics
and biology, such as fermionic interactions and DNA duplication. In photonics,
chirality has traditionally represented differentiated optical responses for
right and left circular polarizations. This definition of optical chirality in
the polarization domain includes handedness-dependent phase velocities or
optical absorption inside chiral media, which enable polarimetry for measuring
the material concentration and circular dichroism spectroscopy for sensing
biological or chemical enantiomers. Recently, the emerging field of
non-Hermitian photonics, which explores exotic phenomena in gain or loss media,
has provided a new viewpoint on chirality in photonics that is not restricted
to the traditional polarization domain but is extended to other physical
quantities such as the orbital angular momentum, propagation direction, and
system parameter space. Here, we introduce recent milestones in chiral
light-matter interactions in non-Hermitian photonics and show an enhanced
degree of design freedom in photonic devices for spin and orbital angular
momenta, directionality, and asymmetric modal conversion.Comment: 25 pages, 6 figures, accepted in Current Optics and Photonics as an
invited revie
- âŠ