28,806 research outputs found
Secure Personal Content Networking over Untrusted Devices
Securely sharing and managing personal content is a challenging task in
multi-device environments. In this paper, we design and implement a new
platform called Personal Content Networking (PCN). Our work is inspired by
Content-Centric Networking (CCN) because we aim to enable access to personal
content using its name instead of its location. The unique challenge of PCN is
to support secure file operations such as replication, updates, and access
control over distributed untrusted devices. The primary contribution of this
work is the design and implementation of a secure content management platform
that supports secure updates, replications, and fine-grained content-centric
access control of files. Furthermore, we demonstrate its feasibility through a
prototype implementation on the CCNx skeleton
Design Architecture-Based on Web Server and Application Cluster in Cloud Environment
Cloud has been a computational and storage solution for many data centric
organizations. The problem today those organizations are facing from the cloud
is in data searching in an efficient manner. A framework is required to
distribute the work of searching and fetching from thousands of computers. The
data in HDFS is scattered and needs lots of time to retrieve. The major idea is
to design a web server in the map phase using the jetty web server which will
give a fast and efficient way of searching data in MapReduce paradigm. For real
time processing on Hadoop, a searchable mechanism is implemented in HDFS by
creating a multilevel index in web server with multi-level index keys. The web
server uses to handle traffic throughput. By web clustering technology we can
improve the application performance. To keep the work down, the load balancer
should automatically be able to distribute load to the newly added nodes in the
server
Body language, security and e-commerce
Security is becoming an increasingly more important concern both at the desktop level and at the network level. This article discusses several approaches to authenticating individuals through the use of biometric devices. While libraries might not implement such devices, they may appear in the near future of desktop computing, particularly for access to institutional computers or for access to sensitive information. Other approaches to computer security focus on protecting the contents of electronic transmissions and verification of individual users. After a brief overview of encryption technologies, the article examines public-key cryptography which is getting a lot of attention in the business world in what is called public key infrastructure. It also examines other efforts, such as IBM’s Cryptolope, the Secure Sockets Layer of Web browsers, and Digital Certificates and Signatures. Secure electronic transmissions are an important condition for conducting business on the Net. These business transactions are not limited to purchase orders, invoices, and contracts. This could become an important tool for information vendors and publishers to control access to the electronic resources they license. As license negotiators and contract administrators, librarians need to be aware of what is happening in these new technologies and the impact that will have on their operations
Device-Based Isolation for Securing Cryptographic Keys
In this work, we describe an eective device-based isolation
approach for achieving data security. Device-based isolation
leverages the proliferation of personal computing devices to
provide strong run-time guarantees for the condentiality of
secrets. To demonstrate our isolation approach, we show its
use in protecting the secrecy of highly sensitive data that
is crucial to security operations, such as cryptographic keys
used for decrypting ciphertext or signing digital signatures.
Private key is usually encrypted when not used, however,
when being used, the plaintext key is loaded into the memory
of the host for access. In our threat model, the host may
be compromised by attackers, and thus the condentiality of
the host memory cannot be preserved. We present a novel
and practical solution and its prototype called DataGuard to
protect the secrecy of the highly sensitive data through the
storage isolation and secure tunneling enabled by a mobile
handheld device. DataGuard can be deployed for the key
protection of individuals or organizations
Encryption – use and control in E-commerce
The author describes how cryptography can be used to address modern business requirements such as identity protection, secure web access and digital signatures. Article by Robert Bond (Head of Innovation & Technology Group, Hobson Audley and Fellow of SALS). Published in Amicus Curiae - Journal of the Institute of Advanced Legal Studies and its Society for Advanced Legal Studies. The Journal is produced by the Society for Advanced Legal Studies at the Institute of Advanced Legal Studies, University of London
An Analysis and Enumeration of the Blockchain and Future Implications
The blockchain is a relatively new technology that has grown in interest and potential research since its inception. Blockchain technology is dominated by cryptocurrency in terms of usage. Research conducted in the past few years, however, reveals blockchain has the potential to revolutionize several different industries. The blockchain consists of three major technologies: a peer-to-peer network, a distributed database, and asymmetrically encrypted transactions. The peer-to-peer network enables a decentralized, consensus-based network structure where various nodes contribute to the overall network performance. A distributed database adds additional security and immutability to the network. The process of cryptographically securing individual transactions forms a core service of the blockchain and enables semi-anonymous user network presence
Keeping Authorities "Honest or Bust" with Decentralized Witness Cosigning
The secret keys of critical network authorities - such as time, name,
certificate, and software update services - represent high-value targets for
hackers, criminals, and spy agencies wishing to use these keys secretly to
compromise other hosts. To protect authorities and their clients proactively
from undetected exploits and misuse, we introduce CoSi, a scalable witness
cosigning protocol ensuring that every authoritative statement is validated and
publicly logged by a diverse group of witnesses before any client will accept
it. A statement S collectively signed by W witnesses assures clients that S has
been seen, and not immediately found erroneous, by those W observers. Even if S
is compromised in a fashion not readily detectable by the witnesses, CoSi still
guarantees S's exposure to public scrutiny, forcing secrecy-minded attackers to
risk that the compromise will soon be detected by one of the W witnesses.
Because clients can verify collective signatures efficiently without
communication, CoSi protects clients' privacy, and offers the first
transparency mechanism effective against persistent man-in-the-middle attackers
who control a victim's Internet access, the authority's secret key, and several
witnesses' secret keys. CoSi builds on existing cryptographic multisignature
methods, scaling them to support thousands of witnesses via signature
aggregation over efficient communication trees. A working prototype
demonstrates CoSi in the context of timestamping and logging authorities,
enabling groups of over 8,000 distributed witnesses to cosign authoritative
statements in under two seconds.Comment: 20 pages, 7 figure
- …