27,627 research outputs found
Astrometric positions for 18 irregular satellites of giant planets from 23 years of observations
The irregular satellites of the giant planets are believed to have been
captured during the evolution of the solar system. Knowing their physical
parameters, such as size, density, and albedo is important for constraining
where they came from and how they were captured. The best way to obtain these
parameters are observations in situ by spacecrafts or from stellar occultations
by the objects. Both techniques demand that the orbits are well known. We aimed
to obtain good astrometric positions of irregular satellites to improve their
orbits and ephemeris. We identified and reduced observations of several
irregular satellites from three databases containing more than 8000 images
obtained between 1992 and 2014 at three sites (Observat\'orio do Pico dos Dias,
Observatoire de Haute-Provence, and European Southern Observatory - La Silla).
We used the software PRAIA (Platform for Reduction of Astronomical Images
Automatically) to make the astrometric reduction of the CCD frames. The UCAC4
catalog represented the International Celestial Reference System in the
reductions. Identification of the satellites in the frames was done through
their ephemerides as determined from the SPICE/NAIF kernels. Some procedures
were followed to overcome missing or incomplete information (coordinates,
date), mostly for the older images. We managed to obtain more than 6000
positions for 18 irregular satellites: 12 of Jupiter, 4 of Saturn, 1 of Uranus
(Sycorax), and 1 of Neptune (Nereid). For some satellites the number of
obtained positions is more than 50\% of what was used in earlier orbital
numerical integrations. Comparison of our positions with recent JPL ephemeris
suggests there are systematic errors in the orbits for some of the irregular
satellites. The most evident case was an error in the inclination of Carme.Comment: 9 pages, with 3 being online materia
A two-component polymeric optode membrane based on a multifunctional ionic liquid
This work details the use of a 2-component optode membrane which is capable of
generating three distinct colours in the presence of Cu2+ and Co2+ ions. It has been
found that the ionic liquid (IL) trihexyltetradecylphosphonium dicyanamide
[P6,6,6,14][DCA] can act as plasticizer, ligand and transducer dye when used in
poly(vinylchloride) (PVC) membranes, which significantly simplifies the optode
membrane platform. Upon exposure to an aqueous Cu2+ solution, a yellow colour is
generated within the membrane, while exposure to aqueous Co2+ solution generates a
blue colour. Exposure to a solution containing both ions produces a green colour.
Vibrational spectroscopy has been used to investigate molecular basis of the IL-metal
binding mechanism. Analytical characteristics of the membranes including the effect
of interfering ions, binding constants and the limit of detection for both ions have
been estimated. Finally the case of simultaneous dual-analyte recognition is presented
based on two distinct absorption maxima
Shuttle mission simulator
The simulator was designed to provide real time simulation capability for all phases of the Shuttle Transportation System orbital missions including prelaunch, ascent, onorbit operations, deorbit, entry, approach/landing, and rollout. Full mission continuity is provided in transition between these mission phases. Dual fixed and motion base crew stations, instructor/operator stations, and computer systems allow parallel, simultaneous crew training with either complex capable of being individually integrated with the mission control center. This integrated training capability allows flight control personnel training in the air/ground interface areas of tracking, telemetry (vehicle systems monitoring), uplink command control, and communications. With the exception of the simulated Data Processing System, which utilizes actual flight computers and associated flight software, all orbiter onboard systems are functionally simulated with extensive simulated malfunction capabilities. Additionally, crew out-the-window visual scenes, and aural cues are rigorously simulated
Automatic exposure control for space sequential camera
The final report for the automatic exposure control study for space sequential cameras, for the NASA Johnson Space Center is presented. The material is shown in the same sequence that the work was performed. The purpose of the automatic exposure control is to automatically control the lens iris as well as the camera shutter so that the subject is properly exposed on the film. A study of design approaches is presented. Analysis of the light range of the spectrum covered indicates that the practical range would be from approximately 20 to 6,000 foot-lamberts, or about nine f-stops. Observation of film available from space flights shows that optimum scene illumination is apparently not present in vehicle interior photography as well as in vehicle-to-vehicle situations. The evaluation test procedure for a breadboard, and the results, which provided information for the design of a brassboard are given
Hubble Space Telescope: SRM/QA observations and lessons learned
The Hubble Space Telescope (HST) Optical Systems Board of Investigation was established on July 2, 1990 to review, analyze, and evaluate the facts and circumstances regarding the manufacture, development, and testing of the HST Optical Telescope Assembly (OTA). Specifically, the board was tasked to ascertain what caused the spherical aberration and how it escaped notice until on-orbit operation. The error that caused the on-orbit spherical aberration in the primary mirror was traced to the assembly process of the Reflective Null Corrector, one of the three Null Correctors developed as special test equipment (STE) to measure and test the primary mirror. Therefore, the safety, reliability, maintainability, and quality assurance (SRM&QA) investigation covers the events and the overall product assurance environment during the manufacturing phase of the primary mirror and Null Correctors (from 1978 through 1981). The SRM&QA issues that were identified during the HST investigation are summarized. The crucial product assurance requirements (including nonconformance processing) for the HST are examined. The history of Quality Assurance (QA) practices at Perkin-Elmer (P-E) for the period under investigation are reviewed. The importance of the information management function is discussed relative to data retention/control issues. Metrology and other critical technical issues also are discussed. The SRM&QA lessons learned from the investigation are presented along with specific recommendations. Appendix A provides the MSFC SRM&QA report. Appendix B provides supplemental reference materials. Appendix C presents the findings of the independent optical consultants, Optical Research Associates (ORA). Appendix D provides further details of the fault-tree analysis portion of the investigation process
Multiplex giant magnetoresistive biosensor microarrays identify interferon-associated autoantibodies in systemic lupus erythematosus.
High titer, class-switched autoantibodies are a hallmark of systemic lupus erythematosus (SLE). Dysregulation of the interferon (IFN) pathway is observed in individuals with active SLE, although the association of specific autoantibodies with chemokine score, a combined measurement of three IFN-regulated chemokines, is not known. To identify autoantibodies associated with chemokine score, we developed giant magnetoresistive (GMR) biosensor microarrays, which allow the parallel measurement of multiple serum antibodies to autoantigens and peptides. We used the microarrays to analyze serum samples from SLE patients and found individuals with high chemokine scores had significantly greater reactivity to 13 autoantigens than individuals with low chemokine scores. Our findings demonstrate that multiple autoantibodies, including antibodies to U1-70K and modified histone H2B tails, are associated with IFN dysregulation in SLE. Further, they show the microarrays are capable of identifying autoantibodies associated with relevant clinical manifestations of SLE, with potential for use as biomarkers in clinical practice
Astrometry of the main satellites of Uranus: 18 years of observations
We determine accurate positions of the main satellites of Uranus: Miranda,
Ariel, Umbriel, Titania, and Oberon. Positions of Uranus, as derived from those
of these satellites, are also determined. The observational period spans from
1992 to 2011. All runs were made at the Pico dos Dias Observatory, Brazil.
We used the software called Platform for Reduction of Astronomical Images
Automatically (PRAIA) to minimise (digital coronography) the influence of the
scattered light of Uranus on the astrometric measurements and to determine
accurate positions of the main satellites. The positions of Uranus were then
indirectly determined by computing the mean differences between the observed
and ephemeris positions of these satellites. A series of numerical filters was
applied to filter out spurious data. These filters are mostly based on the
comparison between the positions of Oberon with those of the other satellites
and on the offsets as given by the differences between the observed and
ephemeris positions of all satellites.
We have, for the overall offsets of the five satellites, -29 (+/-63) mas in
right ascension and -27 (+/-46) mas in declination. For the overall difference
between the offsets of Oberon and those of the other satellites, we have +3
(+/-30) mas in right ascension and -2 (+/-28) mas in declination. Ephemeris
positions for the satellites were determined from DE432+ura111. Comparisons
using other modern ephemerides for the solar system -INPOP13c- and for the
motion of the satellites -NOE-7-2013- were also made. They confirm that the
largest contribution to the offsets we find comes from the motion of the
barycenter of the Uranus system around the barycenter of the solar system, as
given by the planetary ephemerides. Catalogues with the observed positions are
provided.Comment: 13 pages, 21 figure
Filling Knowledge Gaps in a Broad-Coverage Machine Translation System
Knowledge-based machine translation (KBMT) techniques yield high quality in
domains with detailed semantic models, limited vocabulary, and controlled input
grammar. Scaling up along these dimensions means acquiring large knowledge
resources. It also means behaving reasonably when definitive knowledge is not
yet available. This paper describes how we can fill various KBMT knowledge
gaps, often using robust statistical techniques. We describe quantitative and
qualitative results from JAPANGLOSS, a broad-coverage Japanese-English MT
system.Comment: 7 pages, Compressed and uuencoded postscript. To appear: IJCAI-9
Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions
BACKGROUND The ability to present signalling molecules within a low fouling 3D environment that mimics the extracellular matrix is an important goal for a range of biomedical applications, both in vitro and in vivo. Cell responses can be triggered by non-specific protein interactions occurring on the surface of a biomaterial, which is an undesirable process when studying specific receptor-ligand interactions. It is therefore useful to present specific ligands of interest to cell surface receptors in a 3D environment that minimizes non-specific interactions with biomolecules, such as proteins. METHOD In this study, surface-initiated atom transfer radical polymerization (SI-ATRP) of poly(ethylene glycol)-based monomers was carried out from the surface of electrospun fibers composed of a styrene/vinylbenzyl chloride copolymer. Surface initiated radical addition-fragmentation chain transfer (SI-RAFT) polymerisation was also carried out to generate bottle brush copolymer coatings consisting of poly(acrylic acid) and poly(acrylamide). These were grown from surface trithiocarbonate groups generated from the chloromethyl styrene moieties existing in the original synthesised polymer. XPS was used to characterise the surface composition of the fibers after grafting and after coupling with fluorine functional XPS labels. RESULTS Bottle brush type coatings were able to be produced by ATRP which consisted of poly(ethylene glycol) methacrylate and a terminal alkyne-functionalised monomer. The ATRP coatings showed reduced non-specific protein adsorption, as a result of effective PEG incorporation and pendant alkynes groups existing as part of the brushes allowed for further conjugation of via azide-alkyne Huisgen 1,3-dipolar cycloaddition. In the case of RAFT, carboxylic acid moieties were effectively coupled to an amine label via amide bond formation. In each case XPS analysis demonstrated that covalent immobilisation had effectively taken place. CONCLUSION Overall, the studies presented an effective platform for the preparation of 3D scaffolds which contain effective conjugation sites for attachment of specific bioactive signals of interest, as well as actively reducing non-specific protein interactions.This research was supported by the Cooperative Research Centre for
Polymers (CRCP)
- …