2 research outputs found
The Use of Peptides in Veterinary Serodiagnosis of Infectious Diseases: A Review
Articulo de Revisión BibliográficaPeptides constitute an alternative and interesting option to develop treatments, vaccines, and diagnostic tools as they demonstrate their scope in several health aspects; as proof of this, commercial peptides for humans and animals are available on the market and used daily. This review aimed to know the role of peptides in the field of veterinary diagnosis, and include peptide based enzyme-linked immunosorbent assay (pELISA), lateral flow devices, and peptide latex agglutination tests that have been developed to detect several pathogens including viruses and bacteria of health and production relevance in domestic animals. Studies in cattle, small ruminants, dogs, cats, poultry, horses, and even aquatic organisms were reviewed. Different studies showed good levels of sensitivity and specificity against their target, moreover, comparisons with commercial kits and official tests were performed which allowed appraising their performance. Chemical synthesis, recombinant DNA technology, and enzymatic synthesis were reviewed as well as their advantages and drawbacks. In addition, we discussed the intrinsic limitations such as the small size or affinity to polystyrene membrane and mention several strategies to overcome these problems. The use of peptides will increase in the coming years and their utility for diagnostic purposes in animals must be evaluated
Pathogenicity and molecular characterization of a GI-19 infectious bronchitis virus isolated from East China
Infectious bronchitis virus (IBV) is responsible for avian infectious bronchitis, a disease prevalent in countries with intensive poultry farming practices. Given the presence of multiple genotypic strains in China, identifying the regionally dominant genotypes is crucial for the implementation of effective prevention and control measures. This study focuses on the IBV strain CK/CH/WJ/215, isolated from a diseased commercial chicken flock in China in 2021. The CK/CH/WJ/215 isolate was genetically characterized through complete S1 sequence analysis. Phylogenetic comparisons were made with prevalent vaccine strains (H120, LDT3-A, and 4/91). Glycosylation patterns in the S1 protein were also analyzed. Pathogenicity was assessed in 7-day-old specific-pathogen-free chicks, monitoring morbidity, mortality, and tissue tropisms. Phylogenetic analysis clustered the CK/CH/WJ/215 isolate within the GI-19 lineage. Identity with the vaccination strains H120, LDT3-A, and 4/91 was low (75.7%, 78.6%, and 77.5% respectively). Novel glycosylation sites at positions 138 and 530 were identified compared to H120 and LDT-A. The isolate demonstrated nephropathogenic characteristics, causing 100% morbidity and 73.3% mortality in SPF chicks, with broader tropisms in tissues including trachea, lungs, kidneys, and bursa of Fabricius. Comprehensive genetic and pathological investigations revealed significant differences between the CK/CH/WJ/215 isolate and common vaccine strains, including novel glycosylation sites and a strong multiorgan infective capability. These findings are crucial for understanding the evolutionary dynamics of IBV and developing more effective prevention and control strategies