76,862 research outputs found
Characterization and biodegradation of poly (vinyl alcohol)/cassava starch
A series of poly (vinyl alcohol)/cassava starch (PVA/CS) blends at 50, 60, 70 and 80 wt.% cassava starch contents were prepared in one-step compounding process. One step compounding means, all blends were compound together without solely plasticized PVA or cassava starch at beginning. All blends were characterized and testing accordingly. In this research, comparison between one-step compounding and two-step compounding (plasticized PVA/CS at the beginning) were tested by tensile strength. It shows that their tensile strengths were comparatively higher than the two-step compounding process of PVA/CS blends. In term of impact test, it indicates that CS acts as non-reinforcing filler. The compatibility of PVA/CS represents the similarity functional group and possess same polar group. Studies on thermal stability and crystallinity shows, increasing the cassava starch loading in PVA matrix, has reduced the enthalpy of melting point as well as degree of crystallinity. The onset degradation had shifted to a higher temperature when a higher percentage of cassava starch was used in PVA matrix. This is due to cyclic hemiacetal had been introduced into PVA blend by cassava starch. It resist to thermal attack. In biodegradability test, several factors have been determined to evaluate the rate of biodegradation. Increase the humidity as well as increasing the cassava starch loading in PVA matrix will improve the susceptibility contact of microorganism onto the surface of PVA/CS blend. Aspergillus Oryzae had been selected as a good reagent used to degrade the sample of PVA/CS blend compared to Bacillus Amyloliquefaciens and effective microorganism. The biodegradation process of PVA/CS blends in anaerobic condition is much more faster compared to aerobic conditions
Zeta Potential of Modified Multi-walled Carbon Nanotubes in Presence of poly (vinyl alcohol) Hydrogel
The main objective of this study is investigate the behavior of the Zeta Potential of the MWCNT modified with SDS(Sodium Dodecyl Sulfate) and CTAB(Cetyl Tetraethyl Ammonium Bromide) in presence of PVA. Full hydrolyzed PVA was used. As a result, adding PVA in the CNT solution led to decrease the Zeta Potential. The Zeta Potential of suspended colloid varied from 42.00mV to 6.48mV and -45.00mV to -6.4mV at 1.5% concentration of PVA; according with the changing pH, the Zeta Potential dropped to near zero at pH 3 and 11. The pH and PVA has strong influence in the reduction of ZP of MWCNT solution. MWCNT-PVA solution with 33.30mV, -35.69mV at 0.01% of PVA was exposed under AC field; a uniform coat was obtained, with the SDS-MWCNT-PVA solution.National Natural Science Foundation of China Project (Grant No.51073024), the Royal Society-NSFC international joint project (Grant No.51111130207) and Beijing Municipal Science and Technology Plan Projects (No. Z111103066611005)
Determination of effective diffusion coefficient of immobilized Baker's yeast invertase in various concentration of PVA-alginate matrix
Baker's yeast invertase is immobilized in PVA-alginate matrix using an improved method. PVA beads were prepared by adding calcium alginate to improve its stability, mechanical and chemical properties. Boric acid was used as the cross-linking agent and additional chemicals consisting of 10% boric acid and sodium sulphate solution was used as a treatment solution to harden the PVA-alginate beads. The determination of the effective diffusion of PVA-alginate matrix the vital step in optimizing the preparation of immobilized and water-soluble biocatalyst. In this study the two-level full factorial design was used to investigate the effect of PVA and boric acid concentrations and diffusions coefficient. Diffusion coefficient (De) is one of the factors that significantly affect the mass transport within the immobilization matrix. De value varies for each concentration of PVA and boric acid. The result concluded that both factors significantly affect the De. A maximum De value of 5.0141 x 10(-5) cm2s-1 was obtained at boric acid and PVA concentraion of 7w/v and 10.5 w/v respectively
A Novel Electrochemical Biosensor Based On Fe3O4 Nanoparticles-Polyvinyl Alcohol Composite for Sensitive Detection of Glucose
In this research, a new electrochemical biosensor was constructed for the glucose detection. Iron oxide nanoparticles (Fe3O4) were synthesized through co-precipitation method. Polyvinyl alcohol-Fe3O4 nanocomposite was prepared by dispersing synthesized nanoparticles in the polyvinyl alcohol (PVA) solution. Glucose oxidase (GOx) was immobilized on the PVA-Fe3O4 nanocomposite via physical adsorption. The mixture of PVA, Fe3O4 nanoparticles and GOx was drop cast on a tin (Sn) electrode surface (GOx/PVA-Fe3O4/Sn). The Fe3O4 nanoparticles were characterized by X-ray diffraction (XRD). Also, Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FE-SEM) techniques were utilized to evaluate the PVA-Fe3O4 and GOx/PVA-Fe3O4 nanocomposites. The electrochemical performance of the modified biosensor was investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Presence of Fe3O4nanoparticles in the PVA matrix enhanced the electron transfer between enzyme and electrode surface and the immobilized GOx showed excellent catalytic characteristic toward glucose. The GOx/PVA-Fe3O4/Sn bioelectrode could measure glucose in the range from 5 × 10−3 to 30 mM with a sensitivity of 9.36 μA mM−1 and exhibited a lower detection limit of 8 μM at a signal-to-noise ratio of 3. The value of Michaelis-Menten constant (KM) was calculated as 1.42 mM. The modified biosensor also has good anti-interfering ability during the glucose detection, fast response (10 s), good reproducibility and satisfactory stability. Finally, the results demonstrated that the GOx/PVA-Fe3O4/Sn bioelectrode is promising in biosensor construction
The preparation and characterization of chitosan/poly (vinyl alcohol) blended films : mechanical, thermal and surface investigations
In this study, blends of chitosan (CS) and polyvinyl alcohol (PVA) (CS/PVA) having various proportions were prepared and characterized by universal mechanical tester, the differential scanning calorimetry (DSC) and contact angle measurements. Studying the mechanical properties of the films showed that blending improved the tensile strength, which increased with increasing PVA content up to 40% while the elongation% at break of the blends was decreased compared to that of the pure components. The obtained results of DSC suggested that some interaction between chitosan and PVA mostly took place. Static water contact angle measurements showed an improvement in the wettability of the obtained films
PDMS/PVA composite ferroelectret for improved energy harvesting performance
This paper address the PDMS ferroelectret discharge issue for improved long- term energy harvesting performance. The PDMS/PVA ferroelectret is fabricated using a 3D-printed plastic mould technology and a functional PVA composite layer is introduced. The PDMS/PVA composite ferroelectret achieved 80% piezoelectric coefficient d33 remaining, compared with 40% without the proposed layer over 72 hours. Further, the retained percentage of output voltage is about 73% over 72 hours
Intramitochondrial sorting of the precursor to yeast cytochrome c oxidase subunit Va.
We have continued our studies on the import pathway of the precursor to yeast cytochrome c oxidase subunit Va (pVa), a mitochondrial inner membrane protein. Previous work on this precursor demonstrated that import of pVa is unusually efficient, and that inner membrane localization is directed by a membrane-spanning domain in the COOH-terminal third of the protein. Here we report the results of studies aimed at analyzing the intramitochondrial sorting of pVa, as well as the role played by ancillary factors in import and localization of the precursor. We found that pVa was efficiently imported and correctly sorted in mitochondria prepared from yeast strains defective in the function of either mitochondrial heat shock protein (hsp)60 or hsp70. Under identical conditions the import and sorting of another mitochondrial protein, the precursor to the beta subunit of the F1 ATPase, was completely defective. Consistent with previous results demonstrating that the subunit Va precursor is loosely folded, we found that pVa could be efficiently imported into mitochondria after translation in wheat germ extracts. This results suggests that normal levels of extramitochondrial hsp70 are also not required for import of the protein. The results of this study enhance our understanding of the mechanism by which pVa is routed to the mitochondrial inner membrane. They suggest that while the NH2 terminus of pVa is exposed to the matrix and processed by the matrix metalloprotease, the protein remains anchored to the inner membrane before being assembled into a functional holoenzyme complex
Transgenic resistance to PMTV and PVA provides novel insights to viral long-distance movement
The studies in this thesis describe forms of transgenic resistance to plant viruses and how they can be used for studying viral infection cycle. S. tuberosum cv. Saturna expressing the CP gene of Potato mop-top virus (PMTV) was grown in a field infested with the viruliferous vector of PMTV, S. subterranea. The incidence of PMTV-infected tubers was lower in the CP-transgenic potato than in non-transgenic potato. RNA dot-blot analysis revealed that in tubers infected with PMTV, all three RNAs were present. N. benthamiana plants expressing the CP gene of PMTV were inoculated by two different methods i) mechanical inoculation to leaves and ii) growing plants in soil infested with viruliferous S. subterranea. Results showed that the expression of the transgene-derived RNA (or CP) inhibits replication of homologous RNA 2 in transgenic N. benthamiana. Furthermore, the results showed that transgene-mediated resistance to PMTV differs in roots and leaves. Mechanical inoculation with PMTV on CP-transgenic N. benthamiana resulted in symptomless, systemic movement of RNA 1 and RNA 3, but not the CP-encoding RNA (RNA 2). These findings show that PMTV RNA 1 and RNA 3 can infect and move systemically in N. benthamiana without the CP and RNA 2. N. benthamiana transformed with the P1 and VPg cistron, respectively, of Potato virus A (PVA) displayed: i) resistance to PVA infection, ii) susceptibility, or iii) systemic infection followed by recovery from PVA infection of new leaves. Long-distance transport of PVA from lower, infected parts of recovered plants was compromised in the recovered tissue. This result suggests that PVA is moving as ribonucleoprotein complex other than virus particles. N. benthamiana transformed with a polycistronic transgene encoding the CI-NIa-CP cistrons of PVA was susceptible to PVA infection. VPg (the N-proximal part of NIa) is a well-known virulence factor of potyviruses and its possible role in suppression of RNA silencing was studied. PVA VPg was found to increase the severity of disease symptoms when expressed from a Potato virus X vector in N. benthamiana. However, PVA VPg did not show apparent RNA silencing suppression activity. The reason why the polycistronic transgene did not provide resistance could not be resolved
Cloning, preparation and preliminary crystallographic studies of penicillin V acylase autoproteolytic processing mutants
The crystallization of three catalytically inactive mutants of penicillin Vacylase (PVA) from Bacillus sphaericus in precursor and processed forms is reported. The mutant proteins crystallize in different primitive monoclinic space groups that are distinct from the crystal forms for the native enzyme. Directed mutants and clone constructs were designed to study the post-translational autoproteolytic processing of PVA. The catalytically inactive mutants will provide threedimensional structures of precursor PVA forms, plus open a route to the study of enzyme-substrate complexes for this industrially important enzyme
- …