171 research outputs found

    On PT symmetric extensions of the Calogero model

    Get PDF
    peer reviewedThe original Calogero and Sutherland models describe N quantum particles on the line interacting pairwise through an inverse square and an inverse sinus-square potential. They are well known to be integrable and solvable. Here we extend the Calogero and Sutherland Hamiltonians by means of new interactions which are PT-symmetric but not self adjoint. Some of these new interactions lead to integrable PT-symmetric Hamiltonians; the algebraic properties further reveal that they are solvable as well. We also consider PT-symmetric interactions which lead to a new quasi-exactly solvable deformation of the Calogero and Sutherland Hamiltonians

    PT-symmetric deformations of Calogero models

    Get PDF
    We demonstrate that Coxeter groups allow for complex PT-symmetric deformations across the boundaries of all Weyl chambers. We compute the explicit deformations for the A2 and G2-Coxeter group and apply these constructions to Calogero–Moser–Sutherland models invariant under the extended Coxeter groups. The eigenspectra for the deformed models are real and contain the spectra of the undeformed case as subsystems

    PT-symmetric deformations of integrable models

    Get PDF
    We review recent results on new physical models constructed as PT-symmetrical deformations or extensions of different types of integrable models. We present non-Hermitian versions of quantum spin chains, multi-particle systems of Calogero-Moser-Sutherland type and non-linear integrable field equations of Korteweg-de-Vries type. The quantum spin chain discussed is related to the first example in the series of the non-unitary models of minimal conformal field theories. For the Calogero-Moser-Sutherland models we provide three alternative deformations: A complex extension for models related to all types of Coxeter/Weyl groups; models describing the evolution of poles in constrained real valued field equations of non linear integrable systems and genuine deformations based on antilinearly invariant deformed root systems. Deformations of complex nonlinear integrable field equations of KdV-type are studied with regard to different kinds of PT-symmetrical scenarios. A reduction to simple complex quantum mechanical models currently under discussion is presented.Comment: 21 pages, 3 figure

    PT Invariant Complex E (8) Root Spaces

    Get PDF
    We provide a construction procedure for complex root spaces invariant under antilinear transformations, which may be applied to any Coxeter group. The procedure is based on the factorisation of a chosen element of the Coxeter group into two factors. Each of the factors constitutes an involution and may therefore be deformed in an antilinear fashion. Having the importance of the E(8)-Coxeter group in mind, such as underlying a particular perturbation of the Ising model and the fact that for it no solution could be found previously, we exemplify the procedure for this particular case. As a concrete application of this construction we propose new generalisations of Calogero-Moser Sutherland models and affine Toda field theories based on the invariant complex root spaces and deformed complex simple roots, respectively

    Antilinear deformations of Coxeter groups, an application to Calogero models

    Get PDF
    We construct complex root spaces remaining invariant under antilinear involutions related to all Coxeter groups. We provide two alternative constructions: One is based on deformations of factors of the Coxeter element and the other based on the deformation of the longest element of the Coxeter group. Motivated by the fact that non-Hermitian Hamiltonians admitting an antilinear symmetry may be used to define consistent quantum mechanical systems with real discrete energy spectra, we subsequently employ our constructions to formulate deformations of Coxeter models remaining invariant under these extended Coxeter groups. We provide explicit and generic solutions for the Schroedinger equation of these models for the eigenenergies and corresponding wavefunctions. A new feature of these novel models is that when compared with the undeformed case their solutions are usually no longer singular for an exchange of an amount of particles less than the dimension of the representation space of the roots. The simultaneous scattering of all particles in the model leads to anyonic exchange factors for processes which have no analogue in the undeformed case.Comment: 32 page

    Superintegrability of dd-dimensional Conformal Blocks

    Full text link
    We observe that conformal blocks of scalar 4-point functions in a dd-dimensional conformal field theory can mapped to eigenfunctions of a 2-particle hyperbolic Calogero-Sutherland Hamiltonian. The latter describes two coupled P\"oschl-Teller particles. Their interaction, whose strength depends smoothly on the dimension dd, is known to be superintegrable. Our observation enables us to exploit the rich mathematical literature on Calogero-Sutherland models in deriving various results for conformal field theory. These include an explicit construction of conformal blocks in terms of Heckman-Opdam hypergeometric functions and a remarkable duality that relates the blocks of theories in different dimensions.Comment: 5 page

    Supersymmetric Many-particle Quantum Systems with Inverse-square Interactions

    Full text link
    The development in the study of supersymmetric many-particle quantum systems with inverse-square interactions is reviewed. The main emphasis is on quantum systems with dynamical OSp(2|2) supersymmetry. Several results related to exactly solved supersymmetric rational Calogero model, including shape invariance, equivalence to a system of free superoscillators and non-uniqueness in the construction of the Hamiltonian, are presented in some detail. This review also includes a formulation of pseudo-hermitian supersymmetric quantum systems with a special emphasis on rational Calogero model. There are quite a few number of many-particle quantum systems with inverse-square interactions which are not exactly solved for a complete set of states in spite of the construction of infinitely many exact eigen functions and eigenvalues. The Calogero-Marchioro model with dynamical SU(1,1|2) supersymmetry and a quantum system related to short-range Dyson model belong to this class and certain aspects of these models are reviewed. Several other related and important developments are briefly summarized.Comment: LateX, 65 pages, Added Acknowledgment, Discussions and References, Version to appear in Jouranl of Physics A: Mathematical and Theoretical (Commissioned Topical Review Article
    • …
    corecore