3,965,971 research outputs found
Annotation and Curation of the Protein Data Bank
The Protein Data Bank (PDB) is the worldwide repository for experimentally determined 3D structures of biological macromolecules. Established in 1971 with just seven structures, it presently includes more than 56,000 entries. To maintain the highest standards in curation and processing, the members of the worldwide Protein Data Bank (wwPDB) collaborate in data annotation and the development of procedures, tools, and resources. Annotation-related issues, particularly those impacted by new developments
in structural biology, are critically reviewed at in-person and virtual meetings regularly and frequently. Comprehensive documentation of the procedures, formats, and related data dictionaries used in data annotation are available at the wwPDB website(www.wwpdb.org).

Mindful of the impact that changes in annotation procedures or data format may have on users, changes are carefully managed and communicated in a timely fashion. In cases involving complex scientific or policy issues, input is sought from advisory committees, standing task forces, experimental method developers, and community experts. This is exemplified by creation of the recently-released version of the PDB archive which updates and further standardizes database references, small molecule chemistry, biological assemblies, and active sites
Combining intracellular selection with protein-fragment complementation to derive AÂ interacting peptides
Aggregation of the β-amyloid (Aβ) peptide into toxic oligomers is considered the primary event in the pathogenesis of Alzheimer's disease. Previously generated peptides and mimetics designed to bind to amyloid fibrils have encountered problems in solubility, protease susceptibility and the population of small soluble toxic oligomers oligomers. We present a new method that opens the possibility of deriving new amyloid inhibitors. The intracellular protein-fragment complementation assay (PCA) approach uses a semi-rational design approach to generate peptides capable of binding to Aβ. Peptide libraries are based on Aβ regions responsible for instigating amyloidosis, with screening and selection occurring entirely inside Escherichia coli. Successfully selected peptides must therefore bind Aβ and recombine an essential enzyme while permitting bacterial cell survival. No assumptions are made regarding the mechanism of action for selected binders. Biophysical characterisation demonstrates that binding induces a noticeable reduction in amyloid. Therefore, this amyloid-PCA approach may offer a new pathway for the design of effective inhibitors against the formation of amyloid in general
Minimum energy configurations of the 2-dimensional HP-model of proteins by self-organizing networks
We use self-organizing maps (SOM) as an efficient tool to find the minimum energy configurations of the 2-dimensional HP-models of proteins. The usage of the SOM for the protein folding problem is similar to that for the Traveling Salesman Problem. The lattice nodes represent the cities whereas the neurons in the network represent the amino acids moving towards the closest cities, subject to the HH interactions. The valid path that maximizes the HH contacts corresponds to the minimum energy configuration of the protein. We report promising results for the cases when the protein completely fills a lattice and discuss the current problems and possible extensions. In all the test sequences up to 36 amino acids, the algorithm was able to find the global minimum and its degeneracies
Directed evolution converts subtilisin E into a functional equivalent of thermitase
We used directed evolution to convert Bacillus subtilis subtilisin E into an enzyme functionally equivalent to its thermophilic homolog thermitase from Thermoactinomyces vulgaris. Five generations of random mutagenesis, recombination and screening created subtilisin E 5-3H5, whose half-life at 83°C (3.5 min) and temperature optimum for activity (Topt, 76°C) are identical with those of thermitase. The Topt of the evolved enzyme is 17°C higher and its half-life at 65°C is >200 times that of wild-type subtilisin E. In addition, 5-3H5 is more active towards the hydrolysis of succinyl-Ala-Ala-Pro-Phe-p-nitroanilide than wild-type at all temperatures from 10 to 90°C. Thermitase differs from subtilisin E at 157 amino acid positions. However, only eight amino acid substitutions were sufficient to convert subtilisin E into an enzyme equally thermostable. The eight substitutions, which include known stabilizing mutations (N218S, N76D) and also several not previously reported, are distributed over the surface of the enzyme. Only two (N218S, N181D) are found in thermitase. Directed evolution provides a powerful tool to unveil mechanisms of thermal adaptation and is an effective and efficient approach to increasing thermostability without compromising enzyme activity
Epitope mapping using mRNA display and a unidirectional nested deletion library
In vitro selection targeting an anti-polyhistidine monoclonal antibody was performed using mRNA display with a random, unconstrained 27-mer peptide library. After six rounds of selection, epitope-like peptides were identified that contain two to five consecutive, internal histidines and are biased for arginine residues, without any other identifiable consensus. The epitope was further refined by constructing a high-complexity, unidirectional fragment library from the final selection pool. Selection by mRNA display minimized the dominant peptide from the original selection to a 15-residue functional sequence (peptide Cmin: RHDAGDHHHHHGVRQ; K-D = 38 nM). Other peptides recovered from the fragment library selection revealed a separate consensus motif (ARRXA) C-terminal to the histidine track. Kinetics measurements made by surface plasmon resonance, using purified Fab (antigen-binding fragment) to prevent avidity effects, demonstrate that the selected peptides bind with 10- to 75-fold higher affinities than a hexahistidine peptide. The highest affinity peptides (K-D approximate to 10 nM) encode both a short histidine track and the ARRXA motif, suggesting that the motif and other flanking residues make important contacts adjacent to the core polyhistidine-binding site and can contribute > 2.5 kcal/mol of binding free energy. The fragment library construction methodology described here is applicable to the development of high-complexity protein or cDNA expression libraries for the identification of protein-protein interaction domains
Homology modelling of transferrin-binding protein A from Neisseria meningitidis
Neisseria meningitidis, a causative agent of bacterial
meningitis, obtains transferrin-bound iron by expressing
two outer membrane located transferrin-binding proteins,
TbpA and TbpB. TbpA is thought to be an integral outer
membrane pore that facilitates iron uptake. Evidence suggests
that TbpA is a useful antigen for inclusion in a vaccine
effective against meningococcal disease, hence the identification
of regions involved in ligand binding is of paramount
importance to design strategies to block uptake of iron. The
protein shares sequence and functional similarities to the
Escherichia coli siderophore receptors FepA and FhuA,
whose structures have been determined. These receptors
are composed of two domains, a 22-stranded b-barrel and
an N-terminal plug region that sits within the barrel and
occludes the transmembrane pore. A three-dimensional
TbpA model was constructed using FepA and FhuA structural
templates, hydrophobicity analysis and homology
modelling. TbpA was found to possess a similar architecture
to the siderophore receptors. In addition to providing
insights into the highly immunogenic nature of TbpA and
allowing the prediction of potentially important ligandbinding
epitopes, the model also reveals a narrow channel
through its entire length. The relevance of this channel and
the spatial arrangement of external loops, to the mechanism
of iron translocation employed by TbpA is discussed
Influenza Evolution and H3N2 Vaccine Effectiveness, with Application to the 2014/2015 Season
Influenza A is a serious disease that causes significant morbidity and
mortality, and vaccines against the seasonal influenza disease are of variable
effectiveness. In this paper, we discuss use of the method to
predict the dominant influenza strain and the expected vaccine effectiveness in
the coming flu season. We illustrate how the effectiveness of the 2014/2015
A/Texas/50/2012 [clade 3C.1] vaccine against the A/California/02/2014 [clade
3C.3a] strain that emerged in the population can be estimated via pepitope. In
addition, we show by a multidimensional scaling analysis of data collected
through 2014, the emergence of a new A/New Mexico/11/2014-like cluster [clade
3C.2a] that is immunologically distinct from the A/California/02/2014-like
strains.Comment: 19 pages, 4 figure
Detecting similarities among distant homologous proteins by comparison of domain flexibilities
Aim of this work is to assess the informativeness of protein dynamics in the detection of similarities among distant homologous proteins. To this end, an approach to perform large-scale comparisons of protein domain flexibilities is proposed. CONCOORD is confirmed as a reliable method for fast conformational sampling. The root mean square fluctuation of alpha carbon positions in the essential dynamics subspace is employed as a measure of local flexibility and a synthetic index of similarity is presented. The dynamics of a large collection of protein domains from ASTRAL/SCOP40 is analyzed and the possibility to identify relationships, at both the family and the superfamily levels, on the basis of the dynamical features is discussed. The obtained picture is in agreement with the SCOP classification, and furthermore suggests the presence of a distinguishable familiar trend in the flexibility profiles. The results support the complementarity of the dynamical and the structural information, suggesting that information from dynamics analysis can arise from functional similarities, often partially hidden by a static comparison. On the basis of this first test, flexibility annotation can be expected to help in automatically detecting functional similarities otherwise unrecoverable. © 2007 The Author(s)
Multiple structural alignment for distantly related all b structures using TOPS pattern discovery and simulated annealing
Topsalign is a method that will structurally align diverse protein structures, for example, structural alignment of protein superfolds. All proteins within a superfold share the same fold but often have very low sequence identity and different biological and biochemical functions. There is often signi®cant structural diversity around the common scaffold of secondary structure elements of the fold. Topsalign uses topological descriptions of proteins. A pattern discovery algorithm identi®es equivalent secondary structure elements between a set of proteins and these are used to produce an initial multiple structure alignment. Simulated annealing is used to optimize the alignment. The output of Topsalign is a multiple structure-based sequence alignment and a 3D superposition of the structures. This method has been tested on three superfolds: the b jelly roll, TIM (a/b) barrel and the OB fold. Topsalign outperforms established methods on very diverse structures. Despite the pattern discovery working only on b strand secondary structure elements, Topsalign is shown to align TIM (a/b) barrel superfamilies, which contain both a helices and b strands
Conservation and specialization in PAS domain dynamics
The PAS (Per-ARNT-Sim) superfamily is presented as a well-suited study case to demonstrate how comparison of functional motions among distant homologous proteins with conserved fold characteristics may give insight into their functional specialization. Based on the importance of structural flexibility of the receptive structures in anticipating the signal-induced conformational changes of these sensory systems, the dynamics of these structures were analysed. Molecular dynamics was proved to be an effective method to obtain a reliable picture of the dynamics of the crystal structures of HERG, phy3, PYP and FixL, provided that an extensive conformational space sampling is performed. Other reliable sources of dynamic information were the ensembles of NMR structures of hPASK, HIF-2α and PYP. Essential dynamics analysis was successfully employed to extract the relevant information from the sampled conformational spaces. Comparison of motion patterns in the essential subspaces, based on the structural alignment, allowed identification of the specialized region in each domain. This appears to be evolved in the superfamily by following a specific trend, that also suggests the presence of a limited number of general solutions adopted by the PAS domains to sense external signals. These findings may give insight into unknown mechanisms of PAS domains and guide further experimental studies. © The Author 2005. Published by Oxford University Press. All rights reserved
- …