131,919 research outputs found

    Optical fiber coupling method and apparatus

    Get PDF
    Systems are described for coupling a pair of optical fibers to pass light between them, which enables a coupler to be easily made, and with simple equipment, while closely controlling the characteristics of the coupler. One method includes mounting a pair of optical fibers on a block having a large hole therein, so the fibers extend across the hole while lying adjacent and parallel to one another. The fibers are immersed in an etchant to reduce the thickness of cladding around the fiber core. The fibers are joined together by applying a liquid polymer so the polymer-air interface moves along the length of the fibers to bring the fibers together in a zipper-like manner, and to progressively lay a thin coating of the polymer on the fibers

    Near-field electrospinning of conjugated polymer light-emitting nanofibers

    Full text link
    The authors report on the realization of ordered arrays of light-emitting conjugated polymer nanofibers by near-field electrospinning. The fibers, made by poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], have diameters of few hundreds of nanometers and emission peaked at 560 nm. The observed blue-shift compared to the emission from reference films is attributed to different polymer packing in the nanostructures. Optical confinement in the fibers is also analyzed through self-waveguided emission. These results open interesting perspectives for realizing complex and ordered architectures by light-emitting nanofibers, such as photonic circuits, and for the precise positioning and integration of conjugated polymer fibers into light-emitting devices.Comment: 11 pages, 6 figures Nanoscale, 201

    The conformational evolution of elongated polymer solutions tailors the polarization of light-emission from organic nanofibers

    Full text link
    Polymer fibers are currently exploited in tremendously important technologies. Their innovative properties are mainly determined by the behavior of the polymer macromolecules under the elongation induced by external mechanical or electrostatic forces, characterizing the fiber drawing process. Although enhanced physical properties were observed in polymer fibers produced under strong stretching conditions, studies of the process-induced nanoscale organization of the polymer molecules are not available, and most of fiber properties are still obtained on an empirical basis. Here we reveal the orientational properties of semiflexible polymers in electrospun nanofibers, which allow the polarization properties of active fibers to be finely controlled. Modeling and simulations of the conformational evolution of the polymer chains during electrostatic elongation of semidilute solutions demonstrate that the molecules stretch almost fully within less than 1 mm from jet start, increasing polymer axial orientation at the jet center. The nanoscale mapping of the local dichroism of individual fibers by polarized near-field optical microscopy unveils for the first time the presence of an internal spatial variation of the molecular order, namely the presence of a core with axially aligned molecules and a sheath with almost radially oriented molecules. These results allow important and specific fiber properties to be manipulated and tailored, as here demonstrated for the polarization of emitted light.Comment: 45 pages, 10 figures, Macromolecules (2014

    Unbreakable codes in electrospun fibers : digitally encoded polymers to stop medicine counterfeiting

    Get PDF
    Fluorescent polymer solutions can easily be electrospun into micrometer-sized fibers and subsequently encoded with long lasting digital codes by a photobleaching process. Such encoded fibers may find various applications; as illustrated in this report, placing encoded fibers in drug tablets may become a strategy to protect them from counterfeiting

    A capacitive technique for real-time monitoring polymer coating thickness on carbon filaments during prepregging process

    Get PDF
    A technique for gauging the coating thickness during prepreg processing of carbon fibers was developed. It is based on the concept of measuring the capacitance of a cylindrical condenser through which a bundle of prepregged fibers is passed axially. Empirical results indicate the capacitance of this condenser element is linearly related to the polymer coating thickness on the fibers in the bundle. The capacitive transducer was successfully used to measure the polymer thickness on several test fiber bundles under static conditions

    Shear Force Fiber Spinning: Process Parameter and Polymer Solution Property Considerations

    Get PDF
    For application of polymer nanofibers (e.g., sensors, and scaffolds to study cell behavior) it is important to control the spatial orientation of the fibers. We compare the ability to align and pattern fibers using shear force fiber spinning, i.e. contacting a drop of polymer solution with a rotating collector to mechanically draw a fiber, with electrospinning onto a rotating drum. Using polystyrene as a model system, we observe that the fiber spacing using shear force fiber spinning was more uniform than electrospinning with the rotating drum with relative standard deviations of 18% and 39%, respectively. Importantly, the approaches are complementary as the fiber spacing achieved using electrospinning with the rotating drum was ~10 microns while fiber spacing achieved using shear force fiber spinning was ~250 microns. To expand to additional polymer systems, we use polymer entanglement and capillary number. Solution properties that favor large capillary numbers (\u3e50) prevent droplet breakup to facilitate fiber formation. Draw-down ratio was useful for determining appropriate process conditions (flow rate, rotational speed of the collector) to achieve continuous formation of fibers. These rules of thumb for considering the polymer solution properties and process parameters are expected to expand use of this platform for creating hierarchical structures of multiple fiber layers for cell scaffolds and additional applications

    Secondary polymer layered impregnated tile

    Get PDF
    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues

    Design, Fabrication, and Testing of an Electrospinning Apparatus for the Deposition of PMMA Polymer for Biomedical Applications

    Get PDF
    This paper describes the successful design and fabrication of a deposition system for synthesis and assembly of nanoscale and submicron sized fibers of poly(methylmethacrylate)(PMMA) polymer. To optimize the electrospinning deposition process, the distance between the needle and the electrically grounded substrate, the applied voltage, and the concentration of PMMA polymer in the solution were varied. PMMA fibers as small as 500 nanometers were observed using scanning electron microscopy (SEM). The chemical signature of PMMA was confirmed for best quality and retention of chemistry using Fourier Transformed Infrared spectroscopy (FT-IR). PMMA is a biocompatible polymer, and nanofibers of PMMA are key building blocks for scaffolds and other biomanufacturing applications, such as bioprinting for regenerative medicine and tissue engineering of synthetic organs (Mo, 2004)

    Natural fiber reinforced polymer composites

    Get PDF
    The use of natural fibers as a reinforcement for various materials was recorded already in ancient Egypt; however, their rediscovery can be dated to the beginning of 20th century. Currentspecial issueisdevoted to theroleofnatural fibersas reinforcements for various biodegradable and nonbiodegradable polymer matrices. The application of natural fillers can be seen as an approach to adjust material performance of polymer composites supposing that filler/matrix interactions will be optimized and a hygroscopicity of natural fillers will be hindered. This special issue contains 16 papers that highlight a number of reasons for applications of natural fillers in polymer composites. In recent years the discussion about a balance in carbon footprint increased an attractiveness of natural fibers/fillers derived from agricultural sources predominantly from one-year plants
    • …
    corecore