2,372 research outputs found
A new view of the spin echo diffusive diffraction on porous structures
Analysis with the characteristic functional of stochastic motion is used for
the gradient spin echo measurement of restricted motion to clarify details of
the diffraction-like effect in a porous structure. It gives the diffusive
diffraction as an interference of spin phase shifts due to the back-flow of
spins bouncing at the boundaries, when mean displacement of scattered spins is
equal to the spin phase grating prepared by applied magnetic field gradients.
The diffraction patterns convey information about morphology of the surrounding
media at times long enough that opposite boundaries are restricting
displacements. The method explains the dependence of diffraction on the time
and width of gradient pulses, as observed at the experiments and the
simulations. It also enlightens the analysis of transport properties by the
spin echo, particularly in systems, where the motion is restricted by structure
or configuration
Flavonoid glycosides from Persea caerulea. Unraveling their interactions with SDS-micelles through matrix-assisted DOSY, PGSE, mass spectrometry, and NOESY
Two flavonoid glycosides derived from rhamnopyranoside (1) and arabinofuranoside (2) have been isolated from leaves of Persea caerulea for the first time. The structures of 1 and 2 have been established by 1H NMR, 13C NMR, and IR spectroscopy, together with LCâESIâTOF and LCâESIâIT MS spectrometry. From the MS and MS/MS data, the molecular weights of the intact molecules as well as those of quercetin and kaempferol together with their sugar moieties were deduced. The NMR data provided information on the identity of the compounds, as well as the α and ÎČ configurations and the position of the glycosides on quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate (SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion resolution of these two glycosides, by the application of matrixâassisted diffusion ordered spectroscopy (DOSY) and pulse field gradient spin echo (PGSE) methodologies, showing that SDS micelles offer a significant resolution which can, in part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity, and steric effects. In addition, intraâresidue and interâresidue protonâproton distances using nuclear Overhauser effect buildâup curves were used to elucidate the conformational preferences of these two flavonoid glycosides when interacting with the micelles. By the combination of both diffusion and nuclear Overhauser spectroscopy techniques, the average location site of kaempferol and quercetin glycosides has been postulated, with the former exhibiting a clear insertion into the interior of the SDSâmicelle, whereas the latter is placed closer to the surface.Junta de AndalucĂa P12-FQM-266
Spatial correlations in chaotic nanoscale systems with spin-orbit coupling
We investigate the statistical properties of wave functions in chaotic
nanostructures with spin-orbit coupling (SOC), focussing in particular on
spatial correlations of eigenfunctions. Numerical results from a microscopic
model are compared with results from random matrix theory in the crossover from
the gaussian orthogonal to the gaussian symplectic ensembles (with increasing
SOC); one- and two-point distribution functions were computed to understand the
properties of eigenfunctions in this crossover. It is found that correlations
of wave function amplitudes are suppressed with SOC; nevertheless,
eigenfunction correlations play a more important role in the two-point
distribution function(s), compared to the case with vanishing SOC. Experimental
consequences of our results are discussed.Comment: Submitted to PR
Molecular diffusion between walls with adsorption and desorption
The time dependency of the diffusion coefficient of particles in porous media
is an efficient probe of their geometry. The analysis of this quantity,
measured e.g. by nuclear magnetic resonance (PGSE-NMR), can provide rich
information pertaining to porosity, pore size distribution, permeability and
surface-to-volume ratio of porous materials. Nevertheless, in numerous if not
all practical situations, transport is confined by walls where adsorption and
desorption processes may occur. In this article, we derive explicitly the
expression of the time-dependent diffusion coefficient between two confining
walls in the presence of adsorption and desorption. We show that they strongly
modify the time-dependency of the diffusion coefficient, even in this simple
geometry. We finally propose several applications, from sorption rates
measurements to the use as a reference for numerical implementations for more
complex geometries.Comment: 4 pages, 2 figures, 1 supplementary material of 3 page
- âŠ